↓ Skip to main content

Automated identification of copepods using digital image processing and artificial neural network

Overview of attention for article published in BMC Bioinformatics, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Automated identification of copepods using digital image processing and artificial neural network
Published in
BMC Bioinformatics, December 2015
DOI 10.1186/1471-2105-16-s18-s4
Pubmed ID
Authors

Lee Kien Leow, Li-Lee Chew, Ving Ching Chong, Sarinder Kaur Dhillon

Abstract

Copepods are planktonic organisms that play a major role in the marine food chain. Studying the community structure and abundance of copepods in relation to the environment is essential to evaluate their contribution to mangrove trophodynamics and coastal fisheries. The routine identification of copepods can be very technical, requiring taxonomic expertise, experience and much effort which can be very time-consuming. Hence, there is an urgent need to introduce novel methods and approaches to automate identification and classification of copepod specimens. This study aims to apply digital image processing and machine learning methods to build an automated identification and classification technique. We developed an automated technique to extract morphological features of copepods' specimen from captured images using digital image processing techniques. An Artificial Neural Network (ANN) was used to classify the copepod specimens from species Acartia spinicauda, Bestiolina similis, Oithona aruensis, Oithona dissimilis, Oithona simplex, Parvocalanus crassirostris, Tortanus barbatus and Tortanus forcipatus based on the extracted features. 60% of the dataset was used for a two-layer feed-forward network training and the remaining 40% was used as testing dataset for system evaluation. Our approach demonstrated an overall classification accuracy of 93.13% (100% for A. spinicauda, B. similis and O. aruensis, 95% for T. barbatus, 90% for O. dissimilis and P. crassirostris, 85% for O. similis and T. forcipatus). The methods presented in this study enable fast classification of copepods to the species level. Future studies should include more classes in the model, improving the selection of features, and reducing the time to capture the copepod images.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 15%
Student > Master 12 15%
Student > Bachelor 12 15%
Student > Ph. D. Student 11 13%
Other 4 5%
Other 13 16%
Unknown 18 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 20%
Computer Science 16 20%
Engineering 12 15%
Environmental Science 8 10%
Social Sciences 2 2%
Other 9 11%
Unknown 19 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 December 2015.
All research outputs
#14,702,512
of 22,835,198 outputs
Outputs from BMC Bioinformatics
#5,025
of 7,288 outputs
Outputs of similar age
#213,669
of 389,036 outputs
Outputs of similar age from BMC Bioinformatics
#103
of 153 outputs
Altmetric has tracked 22,835,198 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,288 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 389,036 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 153 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.