↓ Skip to main content

Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis)

Overview of attention for article published in BMC Genomics, September 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis)
Published in
BMC Genomics, September 2018
DOI 10.1186/s12864-018-5107-x
Pubmed ID
Authors

Junhong Guo, Jiangfei Chen, Jiankun Yang, Youben Yu, Yajun Yang, Weidong Wang

Abstract

VQ motif-containing (VQ) proteins are plant-specific proteins that interact with WRKY transcription factors and play important roles in plant growth, development and stress response. To date, VQ gene families have been identified and characterized in many plant species, including Arabidopsis, rice and grapevine. However, the VQ gene family in tea plant has not been reported, and the biological functions of this family remain unknown. In total, 25 CsVQ genes were identified based on the genome and transcriptome of tea plant, and a comprehensive bioinformatics analysis was performed. The CsVQ proteins all contained the typical conserved motif FxxhVQxhTG, and most proteins were localized in the nucleus. The phylogenetic analysis showed that the VQ proteins were classified into 5 groups (I, III-VI); the evolution of the CsVQ proteins is consistent with the evolutionary process of plants, and close proteins shared similar structures and functions. In addition, the expression analysis revealed that the CsVQ genes play important roles in the process of tea plant growth, development and response to salt and drought stress. Furthermore, a potential regulatory network including the interactions of CsVQ proteins with CsWRKY transcription factors and the regulation of upstream microRNA that is closely related to the above-mentioned processes is proposed. The results of this study increase our understanding and characterization of CsVQ genes and their encoded proteins in tea plant. This systematic analysis provided comprehensive information for further studies investigating the biological functions of CsVQ proteins in various developmental processes of tea plants.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 20%
Student > Master 4 20%
Student > Bachelor 2 10%
Researcher 2 10%
Unspecified 1 5%
Other 3 15%
Unknown 4 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 50%
Unspecified 1 5%
Earth and Planetary Sciences 1 5%
Psychology 1 5%
Engineering 1 5%
Other 0 0%
Unknown 6 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2018.
All research outputs
#20,535,139
of 23,105,443 outputs
Outputs from BMC Genomics
#9,331
of 10,709 outputs
Outputs of similar age
#296,864
of 341,556 outputs
Outputs of similar age from BMC Genomics
#162
of 193 outputs
Altmetric has tracked 23,105,443 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,709 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,556 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 193 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.