↓ Skip to main content

Driving steady-state visual evoked potentials at arbitrary frequencies using temporal interpolation of stimulus presentation

Overview of attention for article published in BMC Neuroscience, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Driving steady-state visual evoked potentials at arbitrary frequencies using temporal interpolation of stimulus presentation
Published in
BMC Neuroscience, December 2015
DOI 10.1186/s12868-015-0234-7
Pubmed ID
Authors

Søren K. Andersen, Matthias M. Müller

Abstract

Steady-state visual evoked potentials have been utilized widely in basic and applied research in recent years. These oscillatory responses of the visual cortex are elicited by flickering stimuli. They have the same fundamental frequency as the driving stimulus and are highly sensitive to manipulations of attention and stimulus properties. While standard computer monitors offer great flexibility in the choice of visual stimuli for driving SSVEPs, the frequencies that can be elicited are limited to integer divisors of the monitor's refresh rate. To avoid this technical constraint, we devised an interpolation technique for stimulus presentation, with which SSVEPs can be elicited at arbitrary frequencies. We tested this technique with monitor refresh rates of 85 and 120 Hz. At a refresh rate of 85 Hz, interpolated presentation produced artifacts in the recorded spectrum in the form of additional peaks not located at the stimulated frequency or its harmonics. However, at a refresh rate of 120 Hz, these artifacts did not occur and the spectrum elicited by an interpolated flicker became indistinguishable from the spectrum obtained by non-interpolated presentation of the same frequency. Our interpolation technique eliminates frequency limitations of the common non-interpolated presentation technique and has many possible applications for future research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 59 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 20%
Researcher 12 20%
Student > Bachelor 7 12%
Student > Master 6 10%
Student > Doctoral Student 3 5%
Other 8 13%
Unknown 12 20%
Readers by discipline Count As %
Psychology 17 28%
Engineering 9 15%
Neuroscience 8 13%
Agricultural and Biological Sciences 3 5%
Nursing and Health Professions 2 3%
Other 6 10%
Unknown 15 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 January 2016.
All research outputs
#14,830,609
of 22,836,570 outputs
Outputs from BMC Neuroscience
#658
of 1,245 outputs
Outputs of similar age
#216,438
of 389,451 outputs
Outputs of similar age from BMC Neuroscience
#23
of 45 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,245 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 389,451 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.