↓ Skip to main content

Small heat shock proteins are induced during multiple sclerosis lesion development in white but not grey matter

Overview of attention for article published in Acta Neuropathologica Communications, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Small heat shock proteins are induced during multiple sclerosis lesion development in white but not grey matter
Published in
Acta Neuropathologica Communications, December 2015
DOI 10.1186/s40478-015-0267-2
Pubmed ID
Authors

Laura A. N. Peferoen, Wouter H. Gerritsen, Marjolein Breur, Kimberley M. D. Ummenthum, Regina M. B. Peferoen-Baert, Paul van der Valk, Johannes M. van Noort, Sandra Amor

Abstract

The important protective role of small heat-shock proteins (HSPs) in regulating cellular survival and migration, counteracting protein aggregation, preventing apoptosis, and regulating inflammation in the central nervous system is now well-recognized. Yet, their role in the neuroinflammatory disorder multiple sclerosis (MS) is largely undocumented. With the exception of alpha B-crystallin (HSPB5), little is known about the roles of small HSPs in disease. Here, we examined the expression of four small HSPs during lesion development in MS, focussing on their cellular distribution, and regional differences between white matter (WM) and grey matter (GM). It is well known that MS lesions in these areas differ markedly in their pathology, with substantially more intense blood-brain barrier damage, leukocyte infiltration and microglial activation typifying WM but not GM lesions. We analysed transcript levels and protein distribution profiles for HSPB1, HSPB6, HSPB8 and HSPB11 in MS lesions at different stages, comparing them with normal-appearing brain tissue from MS patients and non-neurological controls. During active stages of demyelination in WM, and especially the centre of chronic active MS lesions, we found significantly increased expression of HSPB1, HSPB6 and HSPB8, but not HSPB11. When induced, small HSPs were exclusively found in astrocytes but not in oligodendrocytes, microglia or neurons. Surprisingly, while the numbers of astrocytes displaying high expression of small HSPs were markedly increased in actively demyelinating lesions in WM, no such induction was observed in GM lesions. This difference was particularly obvious in leukocortical lesions covering both WM and GM areas. Since induction of small HSPs in astrocytes is apparently a secondary response to damage, their differential expression between WM and GM likely reflects differences in mediators that accompany demyelination in either WM or GM during MS. Our findings also suggest that during MS, cortical structures fail to benefit from the protective actions of small HSPs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 16 26%
Student > Master 10 16%
Researcher 8 13%
Student > Ph. D. Student 7 11%
Student > Postgraduate 2 3%
Other 7 11%
Unknown 11 18%
Readers by discipline Count As %
Neuroscience 12 20%
Medicine and Dentistry 10 16%
Biochemistry, Genetics and Molecular Biology 8 13%
Agricultural and Biological Sciences 6 10%
Nursing and Health Professions 3 5%
Other 9 15%
Unknown 13 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 December 2015.
All research outputs
#2,770,646
of 22,836,570 outputs
Outputs from Acta Neuropathologica Communications
#512
of 1,375 outputs
Outputs of similar age
#49,038
of 390,618 outputs
Outputs of similar age from Acta Neuropathologica Communications
#11
of 27 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,375 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.9. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,618 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.