↓ Skip to main content

BALR-6 regulates cell growth and cell survival in B-lymphoblastic leukemia

Overview of attention for article published in Molecular Cancer, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
BALR-6 regulates cell growth and cell survival in B-lymphoblastic leukemia
Published in
Molecular Cancer, December 2015
DOI 10.1186/s12943-015-0485-z
Pubmed ID
Authors

Norma I. Rodríguez-Malavé, Thilini R. Fernando, Parth C. Patel, Jorge R. Contreras, Jayanth Kumar Palanichamy, Tiffany M. Tran, Jaime Anguiano, Michael J. Davoren, Michael O. Alberti, Kimanh T. Pioli, Salemiz Sandoval, Gay M. Crooks, Dinesh S. Rao

Abstract

A new class of non-coding RNAs, known as long non-coding RNAs (lncRNAs), has been recently described. These lncRNAs are implicated to play pivotal roles in various molecular processes, including development and oncogenesis. Gene expression profiling of human B-ALL samples showed differential lncRNA expression in samples with particular cytogenetic abnormalities. One of the most promising lncRNAs identified, designated B-ALL associated long RNA-6 (BALR-6), had the highest expression in patient samples carrying the MLL rearrangement, and is the focus of this study. Here, we performed a series of experiments to define the function of BALR-6, including several novel splice forms that we identified. Functionally, siRNA-mediated knockdown of BALR-6 in human B-ALL cell lines caused reduced cell proliferation and increased cell death. Conversely, overexpression of BALR-6 isoforms in both human and mouse cell lines caused increased proliferation and decreased apoptosis. Overexpression of BALR-6 in murine bone marrow transplantation experiments caused a significant increase in early hematopoietic progenitor populations, suggesting that its dysregulation may cause developmental changes. Notably, the knockdown of BALR-6 resulted in global dysregulation of gene expression. The gene set was enriched for leukemia-associated genes, as well as for the transcriptome regulated by Specificity Protein 1 (SP1). We confirmed changes in the expression of SP1, as well as its known interactor and downstream target CREB1. Luciferase reporter assays demonstrated an enhancement of SP1-mediated transcription in the presence of BALR-6. These data provide a putative mechanism for regulation by BALR-6 in B-ALL. Our findings support a role for the novel lncRNA BALR-6 in promoting cell survival in B-ALL. Furthermore, this lncRNA influences gene expression in B-ALL in a manner consistent with a function in transcriptional regulation. Specifically, our findings suggest that BALR-6 expression regulates the transcriptome downstream of SP1, and that this may underlie the function of BALR-6 in B-ALL.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Researcher 6 17%
Student > Bachelor 4 11%
Other 3 8%
Student > Doctoral Student 2 6%
Other 5 14%
Unknown 9 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 31%
Medicine and Dentistry 5 14%
Agricultural and Biological Sciences 3 8%
Immunology and Microbiology 2 6%
Neuroscience 2 6%
Other 2 6%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 December 2015.
All research outputs
#14,243,242
of 22,836,570 outputs
Outputs from Molecular Cancer
#902
of 1,721 outputs
Outputs of similar age
#204,256
of 390,618 outputs
Outputs of similar age from Molecular Cancer
#15
of 34 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,721 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,618 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.