↓ Skip to main content

Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

twitter
2 X users
patent
3 patents

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation
Published in
Biotechnology for Biofuels and Bioproducts, December 2015
DOI 10.1186/s13068-015-0399-4
Pubmed ID
Authors

Fredrik Nielsen, Elia Tomás-Pejó, Lisbeth Olsson, Ola Wallberg

Abstract

Inhibitors that are generated during thermochemical pretreatment and hydrolysis impair the performance of microorganisms during fermentation of lignocellulosic hydrolysates. In omitting costly detoxification steps, the fermentation process relies extensively on the performance of the fermenting microorganism. One attractive option of improving its performance and tolerance to microbial inhibitors is short-term adaptation during propagation. This study determined the influence of short-term adaptation on the performance of recombinant Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation (SSCF). The aim was to understand how short-term adaptation with lignocellulosic hydrolysate affects the cell mass yield of propagated yeast and performance in subsequent fermentation steps. The physiology of propagated yeast was examined with regard to viability, vitality, stress responses, and upregulation of relevant genes to identify any links between the beneficial traits that are promoted during adaptation and overall ethanol yields in co-fermentation. The presence of inhibitors during propagation significantly improved fermentation but lowered cell mass yield during propagation. Xylose utilization of adapted cultures was enhanced by increasing amounts of hydrolysate in the propagation. Ethanol yields improved by over 30 % with inhibitor concentrations that corresponded to ≥2.5 % water-insoluble solids (WIS) load during the propagation compared with the unadapted culture. Adaptation improved cell viability by >10 % and increased vitality by >20 %. Genes that conferred resistance against inhibitors were upregulated with increasing amounts of inhibitors during the propagation, but the adaptive response was not associated with improved ethanol yields in SSCF. The positive effects in SSCF were observed even with adaptation at inhibitor concentrations that corresponded to 2.5 % WIS. Higher amounts of hydrolysate in the propagation feed further improved the fermentation but increased the variability in fermentation outcomes and resulted in up to 20 % loss of cell mass yield. Short-term adaptation during propagation improves the tolerance of inhibitor-resistant yeast strains to inhibitors in lignocellulosic hydrolysates and improves their ethanol yield in fermentation and xylose-fermenting capacity. A low amount of hydrolysate (corresponding to 2.5 % WIS) is optimal, whereas higher amounts decrease cell mass yield during propagation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 20%
Student > Master 12 20%
Student > Bachelor 8 14%
Researcher 8 14%
Student > Doctoral Student 3 5%
Other 6 10%
Unknown 10 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 29%
Agricultural and Biological Sciences 15 25%
Chemical Engineering 4 7%
Engineering 3 5%
Chemistry 3 5%
Other 4 7%
Unknown 13 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 October 2021.
All research outputs
#3,342,941
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#164
of 1,578 outputs
Outputs of similar age
#53,222
of 396,020 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#7
of 54 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,020 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.