↓ Skip to main content

Inhibition of Oct 3/4 mitigates the cardiac progenitor-derived myocardial repair in infarcted myocardium

Overview of attention for article published in Stem Cell Research & Therapy, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhibition of Oct 3/4 mitigates the cardiac progenitor-derived myocardial repair in infarcted myocardium
Published in
Stem Cell Research & Therapy, December 2015
DOI 10.1186/s13287-015-0252-5
Pubmed ID
Authors

Yu Tina Zhao, Jianfeng Du, Youfang Chen, Yaoliang Tang, Gangjian Qin, Guorong Lv, Shougang Zhuang, Ting C. Zhao

Abstract

Recent evidence has demonstrated that cardiac progenitor cells play an essential role in the induction of angiomyogenesis in infarcted myocardium. We and others have shown that engraftment of c-kit(+) cardiac stem cells (CSCs) into infarcted hearts led to myocardium regeneration and neovascularization, which was associated with an improvement of ventricular function. The purpose of this study is aimed at investigating the functional role of transcription factor (TF) Oct3/4 in facilitating CSCs to promote myocardium regeneration and preserve cardiac performance in the post-MI heart. c-kit(+) CSCs were isolated from adult hearts and re-introduced into the infarcted myocardium in which the mouse MI model was created by permanent ligation of the left anterior descending artery (LAD). The Oct3/4 of CSCs was inhibited by transfection of Oct3/4 siRNA, and transfection of CSCs with control siRNA serves as control groups. Myocardial functions were evaluated by echocardiographic measurement. Histological analysis was employed to assess newly formed cardiogenesis, neovascularization, and cell proliferations. Terminal deoxynucleotidyltransferase (TdT) nick-end labeling (TUNEL) was carried out to assess apoptotic cardiomyocytes. Real time polymerase chain reaction and Western blot were carried out to evaluate the level of Oct 3/4 in CSCs. Two weeks after engraftment, CSCs increased ventricular functional recovery as shown by a serial echocardiographic measurement, which is concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Suppression of Oct 3/4 of CSCs abrogated functional improvements and mitigated the hypertrophic response and cardiac remodeling. Transplantation of c-kit(+) CSCs into MI hearts promoted cardiac regeneration and neovascularization, which were abolished with the knockdown of Oct3/4. Additionally, suppression of Oct3/4 abrogated myocyte proliferation in the CSC-engrafted myocardium. Our results indicate that CSCs-derived cardiac regeneration improves the restoration of cardiac function and is mediated through Oct 3/4.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 19%
Student > Bachelor 3 14%
Student > Ph. D. Student 3 14%
Student > Postgraduate 2 10%
Lecturer 1 5%
Other 1 5%
Unknown 7 33%
Readers by discipline Count As %
Medicine and Dentistry 8 38%
Agricultural and Biological Sciences 2 10%
Biochemistry, Genetics and Molecular Biology 2 10%
Unknown 9 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2015.
All research outputs
#18,433,196
of 22,836,570 outputs
Outputs from Stem Cell Research & Therapy
#1,732
of 2,420 outputs
Outputs of similar age
#281,953
of 390,633 outputs
Outputs of similar age from Stem Cell Research & Therapy
#44
of 50 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,420 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,633 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.