↓ Skip to main content

Deltex1 is inhibited by the Notch–Hairy/E(Spl) signaling pathway and induces neuronal and glial differentiation

Overview of attention for article published in Neural Development, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deltex1 is inhibited by the Notch–Hairy/E(Spl) signaling pathway and induces neuronal and glial differentiation
Published in
Neural Development, December 2015
DOI 10.1186/s13064-015-0055-5
Pubmed ID
Authors

Yi-Chuan Cheng, Yin-Cheng Huang, Tu-Hsueh Yeh, Hung-Yu Shih, Ching-Yu Lin, Sheng-Jia Lin, Ching-Chi Chiu, Ching-Wen Huang, Yun-Jin Jiang

Abstract

Notch signaling has been conserved throughout evolution and plays a fundamental role in various neural developmental processes and the pathogenesis of several human cancers and genetic disorders. However, how Notch signaling regulates various cellular processes remains unclear. Although Deltex proteins have been identified as cytoplasmic downstream elements of the Notch signaling pathway, few studies have been reported on their physiological role. We isolated zebrafish deltex1 (dtx1) and showed that this gene is primarily transcribed in the developing nervous system, and its spatiotemporal expression pattern suggests a role in neural differentiation. The transcription of dtx1 was suppressed by the direct binding of the Notch downstream transcription factors Her2 and Her8a. Overexpressing the complete coding sequence of Dtx1 was necessary for inducing neuronal and glial differentiation. By contrast, disrupting Dtx1 expression by using a Dtx1 construct without the RING finger domain reduced neuronal and glial differentiation. This effect was phenocopied by the knockdown of endogenous Dtx1 expression by using morpholinos, demonstrating the essential function of the RING finger domain and confirming the knockdown specificity. Cell proliferation and apoptosis were unaltered in Dtx1-overexpressed and -deficient zebrafish embryos. Examination of the expression of her2 and her8a in embryos with altered Dtx1 expression showed that Dxt1-induced neuronal differentiation did not require a regulatory effect on the Notch-Hairy/E(Spl) pathway. However, both Dtx1 and Notch activation induced glial differentiation, and Dtx1 and Notch activation negatively inhibited each other in a reciprocal manner, which achieves a proper balance for the expression of Dtx1 and Notch to facilitate glial differentiation. We further confirmed that the Dtx1-Notch-Hairy/E(Spl) cascade was sufficient to induce neuronal and glial differentiation by concomitant injection of an active form of Notch with dtx1, which rescued the neuronogenic and gliogenic defects caused by the activation of Notch signaling. Our results demonstrated that Dtx1 is regulated by Notch-Hairy/E(Spl) signaling and is a major factor specifically regulating neural differentiation. Thus, our results provide new insights into the mediation of neural development by the Notch signaling pathway.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 16%
Researcher 4 16%
Professor > Associate Professor 3 12%
Student > Master 3 12%
Student > Ph. D. Student 2 8%
Other 5 20%
Unknown 4 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 24%
Agricultural and Biological Sciences 6 24%
Medicine and Dentistry 3 12%
Neuroscience 2 8%
Psychology 1 4%
Other 2 8%
Unknown 5 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 January 2016.
All research outputs
#13,452,391
of 22,836,570 outputs
Outputs from Neural Development
#91
of 226 outputs
Outputs of similar age
#189,330
of 393,178 outputs
Outputs of similar age from Neural Development
#3
of 5 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 226 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,178 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.