↓ Skip to main content

Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer

Overview of attention for article published in Molecular Cancer, January 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
3 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer
Published in
Molecular Cancer, January 2016
DOI 10.1186/s12943-015-0486-y
Pubmed ID
Authors

Paige Chandler, Bose S. Kochupurakkal, Samina Alam, Andrea L. Richardson, David I. Soybel, Shannon L. Kelleher

Abstract

Zinc (Zn) hyper-accumulates in breast tumors and malignant cell lines compared to normal mammary epithelium. The mechanisms responsible for Zn accumulation and the consequence of Zn dysregulation are poorly understood. Microarrays were performed to assess differences in the expression of Zn transporters and metallothioneins (MTs) in human breast tumors and breast cancer cell lines. Real-time PCR and immunoblotting were employed to profile Zn transporter expression in representative luminal (T47D), basal (MDA-MB-231), and non-malignant (MCF10A) cell lines. Zn distribution in human tumors was assessed by X-ray fluorescence imaging. Zn distribution and content in cell lines was measured using FluoZin-3 imaging, and quantification and atomic absorption spectroscopy. Functional consequences of ZnT2 over-expression in MDA-MB-231 cells including invasion, proliferation, and cell cycle were measured using Boyden chambers, MTT assays, and flow cytometry, respectively. Gene expression profiling of human breast tumors and breast cancer cell lines identified subtype-specific dysregulation in the Zn transporting network. X-ray fluorescence imaging of breast tumor tissues revealed Zn hyper-accumulation at the margins of Luminal breast tumors while Zn was more evenly distributed within Basal tumors. While both T47D and MDA-MB-231 cells hyper-accumulated Zn relative to MCF10A cells, T47D cells accumulated 2.5-fold more Zn compared to MDA-MB-231 cells. FluoZin-3 imaging indicated that Zn was sequestered into numerous large vesicles in T47D cells, but was retained in the cytoplasm and found in fewer and larger, amorphous sub-cellular compartments in MDA-MB-231 cells. The differences in Zn localization mirrored the relative abundance of the Zn transporter ZnT2; T47D cells over-expressed ZnT2, whereas MDA-MB-231 cells did not express ZnT2 protein due to proteasomal degradation. To determine the functional relevance of the lack of ZnT2 in MDA-MB-231cells, cells were transfected to express ZnT2. ZnT2 over-expression led to Zn vesicularization, shifts in cell cycle, enhanced apoptosis, and reduced proliferation and invasion. This comprehensive analysis of the Zn transporting network in malignant breast tumors and cell lines illustrates that distinct subtype-specific dysregulation of Zn management may underlie phenotypic characteristics of breast cancers such as grade, invasiveness, metastatic potential, and response to therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 22%
Student > Master 7 13%
Student > Doctoral Student 6 11%
Researcher 4 7%
Student > Bachelor 3 5%
Other 3 5%
Unknown 20 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 15%
Chemistry 6 11%
Pharmacology, Toxicology and Pharmaceutical Science 5 9%
Medicine and Dentistry 5 9%
Agricultural and Biological Sciences 5 9%
Other 3 5%
Unknown 23 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 April 2021.
All research outputs
#6,293,422
of 22,837,982 outputs
Outputs from Molecular Cancer
#430
of 1,721 outputs
Outputs of similar age
#101,223
of 393,343 outputs
Outputs of similar age from Molecular Cancer
#6
of 30 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 1,721 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,343 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.