↓ Skip to main content

Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean

Overview of attention for article published in BMC Genomics, January 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean
Published in
BMC Genomics, January 2016
DOI 10.1186/s12864-015-2352-0
Pubmed ID
Authors

Xianlong Ding, Jiajia Li, Hao Zhang, Tingting He, Shaohuai Han, Yanwei Li, Shouping Yang, Junyi Gai

Abstract

Cytoplasmic male sterility (CMS) provides crucial breeding materials that facilitate hybrid seed production in various crops, and thus plays an important role in the study of hybrid vigor (heterosis), in plants. However, the CMS regulatory network in soybean remains unclear. MicroRNAs (miRNAs) play crucial roles in flower and pollen development by targeting genes that regulate their expression in plants. To identify the miRNAs and their targets that exist in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput sequencing and degradome analysis were conducted in this study. Two small RNA libraries were constructed from the flower buds of the soybean CMS line NJCMS1A and its maintainer NJCMS1B. A total of 105 new miRNAs present on the other arm of known pre-miRNAs, 23 new miRNA members, 158 novel miRNAs and 160 high-confidence soybean miRNAs were identified using high-throughput sequencing. Among the identified miRNAs, 101 differentially expressed miRNAs with greater than two-fold changes between NJCMS1A and NJCMS1B were discovered. The different expression levels of selected miRNAs were confirmed by stem-loop quantitative real-time PCR. A degradome analysis showed that 856 targets were predicted to be targeted by 296 miRNAs, including a squamosa promoter-binding protein-like transcription factor family protein, a pentatricopeptide repeat-containing protein, and an auxin response factor, which were previously shown to be involved in floral organ or anther development in plants. Additionally, some targets, including a MADS-box transcription factor, NADP-dependent isocitrate dehydrogenase and NADH-ubiquinone oxidoreductase 24 kDa subunit, were identified, and they may have some relationship with the programmed cell death, reactive oxygen species accumulation and energy deficiencies, which might lead to soybean male sterility. The present study is the first to use deep sequencing technology to identify miRNAs and their targets in the flower buds of the soybean CMS line NJCMS1A and its maintainer NJCMS1B. The results revealed that the miRNAs might participate in flower and pollen development, which could facilitate our understanding of the molecular mechanisms behind CMS in soybean.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 22%
Student > Master 7 19%
Student > Ph. D. Student 6 17%
Student > Doctoral Student 3 8%
Student > Postgraduate 2 6%
Other 4 11%
Unknown 6 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 53%
Biochemistry, Genetics and Molecular Biology 6 17%
Computer Science 2 6%
Social Sciences 1 3%
Chemistry 1 3%
Other 1 3%
Unknown 6 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 January 2016.
All research outputs
#17,780,575
of 22,837,982 outputs
Outputs from BMC Genomics
#7,569
of 10,655 outputs
Outputs of similar age
#267,324
of 393,343 outputs
Outputs of similar age from BMC Genomics
#213
of 264 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,343 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 264 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.