↓ Skip to main content

An assessment of spatio-temporal relationships between nocturnal bird migration traffic rates and diurnal bird stopover density

Overview of attention for article published in Movement Ecology, January 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
24 X users
facebook
5 Facebook pages

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An assessment of spatio-temporal relationships between nocturnal bird migration traffic rates and diurnal bird stopover density
Published in
Movement Ecology, January 2016
DOI 10.1186/s40462-015-0066-1
Pubmed ID
Authors

Kyle G. Horton, W. Gregory Shriver, Jeffrey J. Buler

Abstract

Daily magnitudes and fluxes of landbird migration are often measured via nocturnal traffic rates aloft or diurnal densities within terrestrial habitats during stopover. However, these measures are not consistently correlated and at times reveal opposing trends. For this reason we sought to determine how comparison methods (daily magnitude or daily flux), nocturnal monitoring tools (weather surveillance radar, WSR; thermal imaging, TI), and temporal scale (preceding or following diurnal sampling) influenced correlation strength from stopover densities estimated by daily transect counts. We quantified nocturnal traffic rates at two temporal scales; averaged across the entire night and within individual decile periods of the night, and at two spatial scales; within 1 km of airspace surrounding the site via WSR and directly overhead within the narrow beam of a TI. Overall, the magnitude of daily bird density during stopover was positively related to the magnitude of broad-scale radar traffic rates of migrants on preceding and following nights during both the spring and fall. These relationships were strongest on the following night, and particularly from measures early in the night. Only during the spring on the following nights did we find positive correlations between the daily flux of transect counts and migration traffic rates (both WSR and TI). This indicates that our site likely had a more consistent daily turnover of migrants compared to the fall. The lack of general correlations between seasonal trends or daily flux in fine-scale TI traffic rates and stopover densities across or within nights was unexpected and likely due to poor sampling of traffic rates due to the camera's narrow beam. The order (preceding or following day) and metric of comparisons (magnitude or flux), as well as the tool (WSR or TI) used for monitoring nocturnal migration traffic can have dramatic impacts when compared with ground-based estimates of migrant density. WSR provided measures of the magnitude and daily flux in nocturnal migration traffic rates that related to daily stopover counts of migrants during spring and fall. Relationships among migrating bird flux measures are more complex than simple measures of magnitude of migration. Care should be given to address these complexities when comparing data among methods.

X Demographics

X Demographics

The data shown below were collected from the profiles of 24 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
Unknown 40 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 21%
Student > Ph. D. Student 8 19%
Student > Master 6 14%
Student > Bachelor 2 5%
Other 2 5%
Other 4 10%
Unknown 11 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 48%
Environmental Science 7 17%
Earth and Planetary Sciences 1 2%
Medicine and Dentistry 1 2%
Unknown 13 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2018.
All research outputs
#2,212,434
of 24,552,012 outputs
Outputs from Movement Ecology
#99
of 361 outputs
Outputs of similar age
#38,099
of 403,897 outputs
Outputs of similar age from Movement Ecology
#2
of 5 outputs
Altmetric has tracked 24,552,012 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 361 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 22.2. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 403,897 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.