↓ Skip to main content

Rasd1, a small G protein with a big role in the hypothalamic response to neuronal activation

Overview of attention for article published in Molecular Brain, January 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
2 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rasd1, a small G protein with a big role in the hypothalamic response to neuronal activation
Published in
Molecular Brain, January 2016
DOI 10.1186/s13041-015-0182-2
Pubmed ID
Authors

Michael P. Greenwood, Mingkwan Greenwood, Andre S. Mecawi, José Antunes-Rodrigues, Julian F. R. Paton, David Murphy

Abstract

Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain. We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress. We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 19%
Researcher 5 12%
Student > Bachelor 5 12%
Professor > Associate Professor 3 7%
Student > Ph. D. Student 3 7%
Other 8 19%
Unknown 11 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 26%
Neuroscience 6 14%
Biochemistry, Genetics and Molecular Biology 4 9%
Medicine and Dentistry 2 5%
Unspecified 1 2%
Other 7 16%
Unknown 12 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2016.
All research outputs
#6,801,907
of 22,837,982 outputs
Outputs from Molecular Brain
#315
of 1,110 outputs
Outputs of similar age
#109,150
of 393,726 outputs
Outputs of similar age from Molecular Brain
#13
of 39 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,110 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,726 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.