↓ Skip to main content

Regulation of transforming growth factor-beta1 (TGF-β1)-induced pro-fibrotic activities by circadian clock gene BMAL1

Overview of attention for article published in Respiratory Research, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
77 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Regulation of transforming growth factor-beta1 (TGF-β1)-induced pro-fibrotic activities by circadian clock gene BMAL1
Published in
Respiratory Research, January 2016
DOI 10.1186/s12931-016-0320-0
Pubmed ID
Authors

Chunmin Dong, Rafael Gongora, Meredith L. Sosulski, Fayong Luo, Cecilia G. Sanchez

Abstract

BMAL1 is a transcriptional activator of the molecular clock feedback network. Besides its role in generating circadian rhythms, it has also been shown to be involved in the modulation of cell proliferation, autophagy and cancer cell invasion. However, the role of BMAL1 in pulmonary fibrogenesis is still largely unknown. In this study, we investigated the crosstalk between BMAL1 and the signaling transduction and cellular activities of TGF-β1, a key player in lung fibrogenesis. Lungs from wild type and TGF-β1-adenovirus-infected mice were harvested and homogenized for isolation of RNA and protein. RT-PCR and Western Blotting were employed to measure the expression level of clock genes and TGF-β1-induced downstream target genes. siRNA against human BMAL1 gene was transfected by using lipofectamine RNAiMAX to knockdown the endogenous BMAL1 in both lung epithelial cells and fibroblasts. Our results showed that TGF-β1 is able to up-regulate BMAL1 expression in both lung epithelial cells and normal lung fibroblasts. In animal models of pulmonary fibrosis, BMAL1 expression was also significantly higher in adenovirus-TGF-β1-infected mice than in the control group. Interestingly, BMAL1 was mostly found in a deacetylated form in the presence of TGF-β1. Importantly, siRNA-mediated knockdown of BMAL1 significantly attenuated the canonical TGF-β1 signaling pathway and altered TGF-β1-induced epithelial-mesenchymal transition and MMP9 production in lung epithelial cells. In addition, BMAL1 knockdown inhibited the fibroblast to myofibroblast differentiation of normal human lung fibroblasts. Our results indicate that activation of TGF-β1 promotes the transcriptional induction of BMAL1. Furthermore, BMAL1 is required for the TGF-β1-induced signaling transduction and pro-fibrotic activities in the lung.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Sweden 1 1%
Unknown 74 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 19%
Student > Bachelor 12 16%
Student > Master 7 9%
Researcher 6 8%
Student > Doctoral Student 3 4%
Other 13 17%
Unknown 20 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 26 35%
Medicine and Dentistry 13 17%
Agricultural and Biological Sciences 6 8%
Engineering 2 3%
Unspecified 2 3%
Other 7 9%
Unknown 19 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2016.
All research outputs
#14,914,476
of 25,373,627 outputs
Outputs from Respiratory Research
#1,499
of 3,062 outputs
Outputs of similar age
#198,655
of 401,522 outputs
Outputs of similar age from Respiratory Research
#18
of 33 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 401,522 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.