↓ Skip to main content

A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites

Overview of attention for article published in Malaria Journal, January 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
85 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites
Published in
Malaria Journal, January 2016
DOI 10.1186/s12936-015-1059-7
Pubmed ID
Authors

Matteo Valzano, Valentina Cecarini, Alessia Cappelli, Aida Capone, Jovana Bozic, Massimiliano Cuccioloni, Sara Epis, Dezemona Petrelli, Mauro Angeletti, Anna Maria Eleuteri, Guido Favia, Irene Ricci

Abstract

Malaria control strategies are focusing on new approaches, such as the symbiotic control, which consists in the use of microbial symbionts to prevent parasite development in the mosquito gut and to block the transmission of the infection to humans. Several microbes, bacteria and fungi, have been proposed for malaria or other mosquito-borne diseases control strategies. Among these, the yeast Wickerhamomyces anomalus has been recently isolated from the gut of Anopheles mosquitoes, where it releases a natural antimicrobial toxin. Interestingly, many environmental strains of W. anomalus exert a wide anti-bacterial/fungal activity and some of these 'killer' yeasts are already used in industrial applications as food and feed bio-preservation agents. Since a few studies showed that W. anomalus killer strains have antimicrobial effects also against protozoan parasites, the possible anti-plasmodial activity of the yeast was investigated. A yeast killer toxin (KT), purified through combined chromatographic techniques from a W. anomalus strain isolated from the malaria vector Anopheles stephensi, was tested as an effector molecule to target the sporogonic stages of the rodent malaria parasite Plasmodium berghei, in vitro. Giemsa staining was used to detect morphological damages in zygotes/ookinetes after treatment with the KT. Furthermore, the possible mechanism of action of the KT was investigated pre-incubating the protein with castanospermine, an inhibitor of β-glucanase activity. A strong anti-plasmodial effect was observed when the P. berghei sporogonic stages were treated with KT, obtaining an inhibition percentage up to around 90 %. Microscopy analysis revealed several ookinete alterations at morphological and structural level, suggesting the direct implication of the KT-enzymatic activity. Moreover, evidences of the reduction of KT activity upon treatment with castanospermine propose a β-glucanase-mediated activity. The results showed the in vitro killing efficacy of a protein produced by a mosquito strain of W. anomalus against malaria parasites. Further studies are required to test the KT activity against the sporogonic stages in vivo, nevertheless this work opens new perspectives for the possible use of killer strains in innovative strategies to impede the development of the malaria parasite in mosquito vectors by the means of microbial symbionts.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 85 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Madagascar 1 1%
Unknown 83 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 14 16%
Researcher 12 14%
Student > Ph. D. Student 11 13%
Student > Master 11 13%
Professor > Associate Professor 4 5%
Other 9 11%
Unknown 24 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 21%
Biochemistry, Genetics and Molecular Biology 15 18%
Immunology and Microbiology 7 8%
Medicine and Dentistry 6 7%
Pharmacology, Toxicology and Pharmaceutical Science 5 6%
Other 8 9%
Unknown 26 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2016.
All research outputs
#14,102,319
of 24,580,204 outputs
Outputs from Malaria Journal
#3,226
of 5,786 outputs
Outputs of similar age
#190,957
of 405,209 outputs
Outputs of similar age from Malaria Journal
#79
of 173 outputs
Altmetric has tracked 24,580,204 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,786 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,209 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.