↓ Skip to main content

Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster

Overview of attention for article published in BMC Genomics, January 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
8 X users
facebook
1 Facebook page

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
122 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster
Published in
BMC Genomics, January 2016
DOI 10.1186/s12864-016-2383-1
Pubmed ID
Authors

Lucie Kučerová, Olga I. Kubrak, Jonas M. Bengtsson, Hynek Strnad, Sören Nylin, Ulrich Theopold, Dick R. Nässel

Abstract

In models extensively used in studies of aging and extended lifespan, such as C. elegans and Drosophila, adult senescence is regulated by gene networks that are likely to be similar to ones that underlie lifespan extension during dormancy. These include the evolutionarily conserved insulin/IGF, TOR and germ line-signaling pathways. Dormancy, also known as dauer stage in the larval worm or adult diapause in the fly, is triggered by adverse environmental conditions, and results in drastically extended lifespan with negligible senescence. It is furthermore characterized by increased stress resistance and somatic maintenance, developmental arrest and reallocated energy resources. In the fly Drosophila melanogaster adult reproductive diapause is additionally manifested in arrested ovary development, improved immune defense and altered metabolism. However, the molecular mechanisms behind this adaptive lifespan extension are not well understood. A genome wide analysis of transcript changes in diapausing D. melanogaster revealed a differential regulation of more than 4600 genes. Gene ontology (GO) and KEGG pathway analysis reveal that many of these genes are part of signaling pathways that regulate metabolism, stress responses, detoxification, immunity, protein synthesis and processes during aging. More specifically, gene readouts and detailed mapping of the pathways indicate downregulation of insulin-IGF (IIS), target of rapamycin (TOR) and MAP kinase signaling, whereas Toll-dependent immune signaling, Jun-N-terminal kinase (JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways are upregulated during diapause. Furthermore, we detected transcriptional regulation of a large number of genes specifically associated with aging and longevity. We find that many affected genes and signal pathways are shared between dormancy, aging and lifespan extension, including IIS, TOR, JAK/STAT and JNK. A substantial fraction of the genes affected by diapause have also been found to alter their expression in response to starvation and cold exposure in D. melanogaster, and the pathways overlap those reported in GO analysis of other invertebrates in dormancy or even hibernating mammals. Our study, thus, shows that D. melanogaster is a genetically tractable model for dormancy in other organisms and effects of dormancy on aging and lifespan.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 122 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Mexico 1 <1%
Unknown 119 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 32 26%
Student > Bachelor 20 16%
Researcher 15 12%
Student > Master 8 7%
Student > Doctoral Student 7 6%
Other 25 20%
Unknown 15 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 45 37%
Biochemistry, Genetics and Molecular Biology 43 35%
Neuroscience 7 6%
Environmental Science 3 2%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Other 8 7%
Unknown 14 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 October 2019.
All research outputs
#7,229,289
of 23,577,654 outputs
Outputs from BMC Genomics
#3,306
of 10,777 outputs
Outputs of similar age
#115,261
of 398,989 outputs
Outputs of similar age from BMC Genomics
#77
of 254 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 10,777 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 398,989 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 254 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.