↓ Skip to main content

The use of matrigel has no influence on tumor development or PET imaging in FaDu human head and neck cancer xenografts

Overview of attention for article published in BMC Medical Imaging, January 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The use of matrigel has no influence on tumor development or PET imaging in FaDu human head and neck cancer xenografts
Published in
BMC Medical Imaging, January 2016
DOI 10.1186/s12880-016-0105-4
Pubmed ID
Authors

Frederikke P. Fliedner, Anders E. Hansen, Jesper T. Jørgensen, Andreas Kjær

Abstract

In preclinical research Matrixgel(TM) Basement Membrane Matrix (MG) is used frequently for the establishment of syngeneic and xenograft cancer models. Limited information on its influence on parameters including; tumor growth, vascularization, hypoxia and imaging characteristics is currently available. This study evaluates the potential effect of matrigel use in a human head and neck cancer xenograft model (FaDu; hypopharyngeal carcinoma) in NMRI nude mice. The FaDu cell line was chosen based on its frequent use in studies of cancer imaging and tumor microenvironment. NMRI nude mice (n = 34) were divided into two groups and subcutaneously injected with FaDu cells in medium either including (+MG) or excluding matrigel (-MG). In sub study I seven mice from each group (+MG, n = 7; -MG, n = 7) were (18)F- fluorodeoxyglucose ((18)F-FDG) PET/CT scanned on Day 5, 8, 12, 15, and 19. In sub study II ten mice from each group (+MG, n = 10; -MG, n = 10) were included and tumors collected for immunohistochemistry (IHC) analysis of tumor microenvironment including; proliferation ratio, micro vessel density, average vessel area, hypoxia, nuclear density, and necrosis. Tumors for IHC were collected according to size (200-400 mm(3), 500-700 mm(3), 800-1100 mm(3)). FDG uptake and tumor growth was statistically compatible for the tumors established with or without MG. The IHC analysis on all parameters only identified a significantly higher micro vessel density for tumor size 500-700 mm(3) and 800-1100 mm(3) and average vessel area for tumor size 500-700 mm(3) in the -MG group. Comparable variations were observed for tumors of both the +MG and -MG groups. No difference in tumor take rate was observed between groups in study. Matrigel did not affect tumor growth or tumor take for the FaDu xenograft model evaluated. Tumors in the -MG group displayed increased angiogenesis compared to the +MG tumors. No difference in (18)F-FDG PET uptake for tumors of different groups was found. Based on these observations the influence of matrigel on tumor imaging and tumor microenvironment seems minor for this particular xenograft model.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 22%
Researcher 8 22%
Student > Master 6 16%
Other 4 11%
Librarian 2 5%
Other 4 11%
Unknown 5 14%
Readers by discipline Count As %
Medicine and Dentistry 9 24%
Agricultural and Biological Sciences 5 14%
Biochemistry, Genetics and Molecular Biology 4 11%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Engineering 2 5%
Other 7 19%
Unknown 8 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2016.
All research outputs
#20,302,535
of 22,840,638 outputs
Outputs from BMC Medical Imaging
#449
of 596 outputs
Outputs of similar age
#332,255
of 395,720 outputs
Outputs of similar age from BMC Medical Imaging
#9
of 10 outputs
Altmetric has tracked 22,840,638 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 596 research outputs from this source. They receive a mean Attention Score of 2.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,720 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one.