↓ Skip to main content

Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap

Overview of attention for article published in BMC Genomic Data, January 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
80 Dimensions

Readers on

mendeley
103 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap
Published in
BMC Genomic Data, January 2016
DOI 10.1186/s12863-016-0330-4
Pubmed ID
Authors

Xian Zhang, Jiaojiao Niu, Yili Liang, Xueduan Liu, Huaqun Yin

Abstract

Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 103 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 2%
Unknown 101 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 27%
Student > Master 14 14%
Researcher 12 12%
Student > Bachelor 12 12%
Student > Postgraduate 7 7%
Other 16 16%
Unknown 14 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 33%
Biochemistry, Genetics and Molecular Biology 22 21%
Environmental Science 15 15%
Immunology and Microbiology 5 5%
Earth and Planetary Sciences 2 2%
Other 5 5%
Unknown 20 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2016.
All research outputs
#7,778,730
of 25,374,917 outputs
Outputs from BMC Genomic Data
#276
of 1,204 outputs
Outputs of similar age
#115,429
of 402,953 outputs
Outputs of similar age from BMC Genomic Data
#6
of 45 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 402,953 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.