↓ Skip to main content

Informative gene selection and the direct classification of tumors based on relative simplicity

Overview of attention for article published in BMC Bioinformatics, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Informative gene selection and the direct classification of tumors based on relative simplicity
Published in
BMC Bioinformatics, January 2016
DOI 10.1186/s12859-016-0893-0
Pubmed ID
Authors

Yuan Chen, Lifeng Wang, Lanzhi Li, Hongyan Zhang, Zheming Yuan

Abstract

Selecting a parsimonious set of informative genes to build highly generalized performance classifier is the most important task for the analysis of tumor microarray expression data. Many existing gene pair evaluation methods cannot highlight diverse patterns of gene pairs only used one strategy of vertical comparison and horizontal comparison, while individual-gene-ranking method ignores redundancy and synergy among genes. Here we proposed a novel score measure named relative simplicity (RS). We evaluated gene pairs according to integrating vertical comparison with horizontal comparison, finally built RS-based direct classifier (RS-based DC) based on a set of informative genes capable of binary discrimination with a paired votes strategy. Nine multi-class gene expression datasets involving human cancers were used to validate the performance of new method. Compared with the nine reference models, RS-based DC received the highest average independent test accuracy (91.40 %), the best generalization performance and the smallest informative average gene number (20.56). Compared with the four reference feature selection methods, RS also received the highest average test accuracy in three classifiers (Naïve Bayes, k-Nearest Neighbor and Support Vector Machine), and only RS can improve the performance of SVM. Diverse patterns of gene pairs could be highlighted more fully while integrating vertical comparison with horizontal comparison strategy. DC core classifier can effectively control over-fitting. RS-based feature selection method combined with DC classifier can lead to more robust selection of informative genes and classification accuracy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 26%
Researcher 7 23%
Student > Bachelor 3 10%
Student > Master 3 10%
Student > Postgraduate 2 6%
Other 3 10%
Unknown 5 16%
Readers by discipline Count As %
Computer Science 6 19%
Biochemistry, Genetics and Molecular Biology 5 16%
Agricultural and Biological Sciences 5 16%
Mathematics 3 10%
Medicine and Dentistry 3 10%
Other 1 3%
Unknown 8 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2016.
All research outputs
#15,354,849
of 22,840,638 outputs
Outputs from BMC Bioinformatics
#5,378
of 7,288 outputs
Outputs of similar age
#231,884
of 394,766 outputs
Outputs of similar age from BMC Bioinformatics
#106
of 146 outputs
Altmetric has tracked 22,840,638 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,288 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 394,766 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.