↓ Skip to main content

Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation

Overview of attention for article published in Microbial Cell Factories, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation
Published in
Microbial Cell Factories, January 2016
DOI 10.1186/s12934-016-0418-6
Pubmed ID
Authors

En-Xu Wang, Ming-Zhu Ding, Qian Ma, Xiu-Tao Dong, Ying-Jin Yuan

Abstract

In the industry, the conventional two-step fermentation method was used to produce 2-keto-L-gulonic acid (2-KGA), the precursor of vitamin C, by three strains, namely, Gluconobacter oxydans, Bacillus spp. and Ketogulonicigenium vulgare. Despite its high production efficiency, the long incubation period and an additional second sterilization process inhibit the further development. Therefore, we aimed to reorganize a synthetic consortium of G. oxydans and K. vulgare for one-step fermentation of 2-KGA and enhance the symbiotic interaction between microorganisms to perform better. During the fermentation, competition for sorbose of G. oxydans arose when co-cultured with K. vulgare. In this study, the competition between the two microbes was alleviated and their mutualism was enhanced by deleting genes involved in sorbose metabolism of G. oxydans. In the engineered synthetic consortium (H6 + Kv), the yield of 2-KGA (mol/mol) against D-sorbitol reached 89.7 % within 36 h, increased by 29.6 %. Furthermore, metabolomic analysis was used to verify the enhancement of the symbiotic relationship and to provide us potential strategies for improving the synthetic consortium. Additionally, a significant redistribution of metabolism occurred by co-culturing the K. vulgare with the engineered G. oxydans, mainly reflected in the increased TCA cycle, purine, and fatty acid metabolism. We reorganized and optimized a synthetic consortium of G. oxydans and K. vulgare to produce 2-KGA directly from D-sorbitol. The yield of 2-KGA was comparable to that of the conventional two-step fermentation. The metabolic interaction between the strains was further investigated by metabolomics, which verified the enhancement of the mutualism between the microbes and gave us a better understanding of the synthetic consortium.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Indonesia 1 <1%
China 1 <1%
Unknown 109 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 24%
Student > Master 19 17%
Researcher 16 14%
Student > Bachelor 14 13%
Student > Doctoral Student 5 5%
Other 9 8%
Unknown 21 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 24%
Biochemistry, Genetics and Molecular Biology 22 20%
Engineering 12 11%
Chemical Engineering 10 9%
Immunology and Microbiology 5 5%
Other 10 9%
Unknown 25 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 January 2016.
All research outputs
#15,355,821
of 22,842,950 outputs
Outputs from Microbial Cell Factories
#986
of 1,602 outputs
Outputs of similar age
#233,179
of 396,496 outputs
Outputs of similar age from Microbial Cell Factories
#16
of 31 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,602 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,496 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.