↓ Skip to main content

A Bayesian Belief Network for Murray Valley encephalitis virus risk assessment in Western Australia

Overview of attention for article published in International Journal of Health Geographics, January 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
2 news outlets
facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Bayesian Belief Network for Murray Valley encephalitis virus risk assessment in Western Australia
Published in
International Journal of Health Geographics, January 2016
DOI 10.1186/s12942-016-0036-x
Pubmed ID
Authors

Soon Hoe Ho, Peter Speldewinde, Angus Cook

Abstract

Murray Valley encephalitis virus (MVEV) is a clinically important virus in Australia responsible for a number of epidemics over the past century. Since there is no vaccine for MVEV, other preventive health measures to curtail its spread must be considered, including the development of predictive risk models and maps to help direct public health interventions. This article aims to support these approaches by presenting a model for assessing MVEV risk in Western Australia (WA). A Bayesian Belief Network (BBN) for assessing MVEV risk was developed and used to quantify and map disease risks in WA. The model combined various abiotic, biotic, and anthropogenic factors that might affect the risk of MVEV into a predictive framework, based on the ecology of the major mosquito vector and waterbird hosts of MVEV. It was further refined and tested using retrospective climate data from 4 years (2000, 2003, 2009, and 2011). Implementing the model across WA demonstrated that it could predict locations of human MVEV infection and sentinel animal seroconversion in the 4 years tested with some degree of accuracy. In general, risks are highest in the State's north and lower in the south. The model predicted that short-term climate change, based on the Intergovernmental Panel on Climate Change's A1B emissions scenario, would decrease MVEV risks in summer and autumn, largely due to higher temperatures decreasing vector survival. To our knowledge, this is the first model to use a BBN to quantify MVEV risks in WA. The models and maps developed here may assist public health agencies in preparing for and managing Murray Valley encephalitis in the future. In its current form, the model is knowledge-driven and based on the analysis of potential risk factors that affect the dynamics of MVEV using retrospective data. Further work and additional testing should be carried out to test its validity in future years.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 18%
Student > Master 7 13%
Student > Bachelor 5 9%
Student > Ph. D. Student 4 7%
Other 3 5%
Other 9 16%
Unknown 17 31%
Readers by discipline Count As %
Medicine and Dentistry 7 13%
Computer Science 4 7%
Environmental Science 4 7%
Engineering 4 7%
Veterinary Science and Veterinary Medicine 3 5%
Other 15 27%
Unknown 18 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2016.
All research outputs
#2,107,583
of 22,842,950 outputs
Outputs from International Journal of Health Geographics
#69
of 628 outputs
Outputs of similar age
#39,547
of 396,721 outputs
Outputs of similar age from International Journal of Health Geographics
#1
of 14 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 628 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.4. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,721 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.