↓ Skip to main content

Evaluating the role of a trypsin inhibitor from soap nut (Sapindus trifoliatus L. Var. Emarginatus) seeds against larval gut proteases, its purification and characterization

Overview of attention for article published in BMC Molecular and Cell Biology, October 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluating the role of a trypsin inhibitor from soap nut (Sapindus trifoliatus L. Var. Emarginatus) seeds against larval gut proteases, its purification and characterization
Published in
BMC Molecular and Cell Biology, October 2015
DOI 10.1186/s12858-015-0052-7
Pubmed ID
Authors

V D Sirisha Gandreddi, Vijaya Rachel Kappala, Kunal Zaveri, Kiranmayi Patnala

Abstract

The defensive capacities of plant protease Inhibitors (PI) rely on inhibition of proteases in insect guts or those secreted by microorganisms; and also prevent uncontrolled proteolysis and offer protection against proteolytic enzymes of pathogens. An array of chromatographic techniques were employed for purification, homogeneity was assessed by electrophoresis. Specificity, Ki value, nature of inhibition, complex formation was carried out by standard protocols. Action of SNTI on insect gut proteases was computationally evaluated by modeling the proteins by threading and docking studies by piper using Schrodinger tools. We have isolated and purified Soap Nut Trypsin Inhibitor (SNTI) by acetone fractionation, ammonium sulphate precipitation, ion exchange and gel permeation chromatography. The purified inhibitor was homogeneous by both gel filtration and polyacrylamide gel electrophoresis (PAGE). SNTI exhibited a molecular weight of 29 kDa on SDS-PAGE, gel filtration and was negative to Periodic Acid Schiff's stain. SNTI inhibited trypsin and pronase of serine class. SNTI demonstrated non-competitive inhibition with a Ki value of 0.75 ± 0.05×10-10 M. The monoheaded inhibitor formed a stable complex in 1:1 molar ratio. Action of SNTI was computationally evaluated on larval gut proteases from Helicoverpa armigera and Spodoptera frugiperda. SNTI and larval gut proteases were modeled and docked using Schrodinger software. Docking studies revealed strong hydrogen bond interactions between Lys10 and Pro71, Lys299 and Met80 and Van Der Waals interactions between Leu11 and Cys76amino acid residues of SNTI and protease from H. Armigera. Strong hydrogen bonds were observed between SNTI and protease of S. frugiperda at positions Thr79 and Arg80, Asp90 and Gly73, Asp2 and Gly160 respectively. We conclude that SNTI potentially inhibits larval gut proteases of insects and the kinetics exhibited by the protease inhibitor further substantiates its efficacy against serine proteases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 31%
Researcher 5 16%
Professor > Associate Professor 3 9%
Student > Master 3 9%
Other 2 6%
Other 2 6%
Unknown 7 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 41%
Biochemistry, Genetics and Molecular Biology 4 13%
Medicine and Dentistry 2 6%
Business, Management and Accounting 1 3%
Chemical Engineering 1 3%
Other 2 6%
Unknown 9 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2022.
All research outputs
#20,656,161
of 25,374,647 outputs
Outputs from BMC Molecular and Cell Biology
#935
of 1,233 outputs
Outputs of similar age
#215,579
of 294,225 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#11
of 18 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,225 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.