↓ Skip to main content

Structural plasticity of green fluorescent protein to amino acid deletions and fluorescence rescue by folding-enhancing mutations

Overview of attention for article published in BMC Molecular and Cell Biology, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Structural plasticity of green fluorescent protein to amino acid deletions and fluorescence rescue by folding-enhancing mutations
Published in
BMC Molecular and Cell Biology, July 2015
DOI 10.1186/s12858-015-0046-5
Pubmed ID
Authors

Shu-su Liu, Xuan Wei, Xue Dong, Liang Xu, Jia Liu, Biao Jiang

Abstract

Green fluorescent protein (GFP) and its derivative fluorescent proteins (FPs) are among the most commonly used reporter systems for studying gene expression and protein interaction in biomedical research. Most commercially available FPs have been optimized for their oligomerization state to prevent potential structural constraints that may interfere with the native function of fused proteins. Other approach to reducing structural constraints may include minimizing the structure of GFPs. Previous studies in an enhanced GFP variant (EGFP) identified a series of deletions that can retain GFP fluorescence. In this study, we interrogated the structural plasticity of a UV-optimized GFP variant (GFPUV) to amino acid deletions, characterized the effects of deletions and explored the feasibility of rescuing the fluorescence of deletion mutants using folding-enhancing mutations. Transposon mutagenesis was used to screen amino acid deletions in GFP that led to fluorescent and nonfluorescent phenotypes. The fluorescent GFP mutants were characterized for their whole-cell fluorescence and fraction soluble. Fluorescent GFP mutants with internal deletions were purified and characterized for their spectral and folding properties. Folding-ehancing mutations were introduced to deletion mutants to rescue their compromised fluorescence. We identified twelve amino acid deletions that can retain the fluorescence of GFPUV. Seven of these deletions are either at the N- or C- terminus, while the other five are located at internal helices or strands. Further analysis suggested that the five internal deletions diminished the efficiency of protein folding and chromophore maturation. Protein expression under hypothermic condition or incorporation of folding-enhancing mutations could rescue the compromised fluorescence of deletion mutants. In addition, we generated dual deletion mutants that can retain GFP fluorescence. Our results suggested that a "size-minimized" GFP may be developed by iterative incorporation of amino acid deletions, followed by fluorescence rescue with folding-enhancing mutations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 16 23%
Student > Ph. D. Student 9 13%
Researcher 8 12%
Student > Master 7 10%
Student > Postgraduate 4 6%
Other 14 20%
Unknown 11 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 30 43%
Agricultural and Biological Sciences 14 20%
Chemistry 5 7%
Unspecified 4 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Other 4 6%
Unknown 11 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2016.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from BMC Molecular and Cell Biology
#1,054
of 1,233 outputs
Outputs of similar age
#234,861
of 274,900 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#12
of 17 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,900 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.