↓ Skip to main content

Epithelial-mesenchymal plasticity is a decisive feature for the metastatic outgrowth of disseminated WAP-T mouse mammary carcinoma cells

Overview of attention for article published in BMC Cancer, March 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
1 X user
patent
1 patent

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Epithelial-mesenchymal plasticity is a decisive feature for the metastatic outgrowth of disseminated WAP-T mouse mammary carcinoma cells
Published in
BMC Cancer, March 2015
DOI 10.1186/s12885-015-1165-5
Pubmed ID
Authors

Claudia Maenz, Eva Lenfert, Klaus Pantel, Udo Schumacher, Wolfgang Deppert, Florian Wegwitz

Abstract

Experimental analysis of the metastatic cascade requires suitable model systems which allow tracing of disseminated tumor cells and the identification of factors leading to metastatic outgrowth in distant organs. Such models, especially models using immune-competent mice, are rather scarce. We here analyze tumor cell dissemination and metastasis in an immune-competent transplantable mouse mammary tumor model, based on the SV40 transgenic WAP-T mouse mammary carcinoma model. We orthotopically transplanted into immune-competent WAP-T mice two tumor cell lines (H8N8, moderately metastatic, and G-2, non-metastatic), developed from primary WAP-T tumors. G-2 and H8N8 cells exhibit stem cell characteristics, form homeostatic, heterotypic tumor cell systems in vitro, and closely mimic endogenous primary tumors after orthotopic transplantation into syngeneic, immune-competent WAP-T mice. Tumor cell transgene-specific PCR allows monitoring of tumor cell dissemination into distinct organs, and immunohistochemistry for SV40 T-antigen tracing of single disseminated tumor cells (DTC). While only H8N8 cell-derived tumors developed metastases, tumors induced with both cell lines disseminated into a variety of organs with similar efficiency and similar organ distribution. H8N8 metastases arose only in lungs, indicating that organ-specific metastatic outgrowth depends on the ability of DTC to re-establish a tumor cell system rather than on invasion per se. Resection of small tumors (0.5 cm(3)) prevented metastasis of H8N8-derived tumors, most likely due to the rather short half-life of DTC, and thus to shorter exposure of the mice to DTC. In experimental metastasis by tail vein injection, G-2 and H8N8 cells both were able to form lung metastases with similar efficiency. However, after injection of sorted "mesenchymal" and "epithelial" G-2 cell subpopulations, only the "epithelial" subpopulation formed lung metastases. We demonstrate the utility of our mouse model to analyze factors influencing tumor cell dissemination and metastasis. We suggest that the different metastatic capacity of G-2 and H8N8 cells is due to their different degrees of epithelial-mesenchymal plasticity (EMP), and thus the ability of the respective disseminated cells to revert from a "mesenchymal" to an "epithelial" differentiation state.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 21%
Student > Bachelor 5 17%
Researcher 4 14%
Student > Master 3 10%
Student > Doctoral Student 2 7%
Other 5 17%
Unknown 4 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 41%
Medicine and Dentistry 3 10%
Agricultural and Biological Sciences 3 10%
Nursing and Health Professions 1 3%
Neuroscience 1 3%
Other 1 3%
Unknown 8 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2017.
All research outputs
#7,227,170
of 22,842,950 outputs
Outputs from BMC Cancer
#1,947
of 8,313 outputs
Outputs of similar age
#85,905
of 263,409 outputs
Outputs of similar age from BMC Cancer
#56
of 248 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 8,313 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,409 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 248 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.