↓ Skip to main content

Beyond the passive interactions at the nano-bio interface: evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles

Overview of attention for article published in Journal of Nanobiotechnology, January 2016
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Beyond the passive interactions at the nano-bio interface: evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles
Published in
Journal of Nanobiotechnology, January 2016
DOI 10.1186/s12951-016-0160-6
Pubmed ID
Authors

Daniel N. Freitas, Andrew J. Martinolich, Zoe N. Amaris, Korin E. Wheeler

Abstract

In a biological system, an engineered nanomaterial (ENM) surface is altered by adsorbed proteins that modify ENM fate and toxicity. Thus far, protein corona characterizations have focused on protein adsorption, interaction strength, and downstream impacts on cell interactions. Given previous reports of Ag ENM disruption of Cu trafficking, this study focuses on Ag ENM interactions with a model Cu metalloprotein, Cu(II) azurin. The study provides evidence of otherwise overlooked ENM-protein chemical reactivity within the corona: redox activity. Citrate-coated Ag ENMs of various sizes (10-40 nm) reacted with Cu(II) azurin resulted in an order of magnitude more dissolved ionic silver (Ag(I)(aq)) than samples of Ag ENMs only, ENMs mixed Cu(II) ions, or control proteins such as cytochrome c and horse radish peroxidase. This dramatic increase in ENM oxidative dissolution was observed even when Cu(II) azurin was combined with a diverse mixture of Escherchia coli proteins to mimic the complexity of the cellular conona. SDS PAGE results confirm that the multiprotein ENM corona includes azurin. A Cu(I)(aq) colorimetric indicator confirms Cu(II) azurin reduction upon interaction with Ag ENMs, but not with the addition of ionic silver, Ag(I)(aq). Cu(II) azurin and 10-40 nm Ag ENMs react to catalyze Ag ENM oxidative dissolution and reduction of the model Cu metalloprotein. Results push the current evaluation of protein-ENM characterization beyond passive binding interactions and enable the proposal of a mechanism for reactivity between a model Cu metalloprotein and Ag ENMs.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 26%
Researcher 5 26%
Professor > Associate Professor 2 11%
Student > Bachelor 1 5%
Student > Doctoral Student 1 5%
Other 1 5%
Unknown 4 21%
Readers by discipline Count As %
Chemistry 4 21%
Agricultural and Biological Sciences 3 16%
Medicine and Dentistry 2 11%
Linguistics 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 4 21%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 February 2016.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Journal of Nanobiotechnology
#1,745
of 1,919 outputs
Outputs of similar age
#345,551
of 403,904 outputs
Outputs of similar age from Journal of Nanobiotechnology
#13
of 13 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,919 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 403,904 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.