↓ Skip to main content

Genome ARTIST: a robust, high-accuracy aligner tool for mapping transposon insertions and self-insertions

Overview of attention for article published in Mobile DNA, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
9 X users
patent
1 patent

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome ARTIST: a robust, high-accuracy aligner tool for mapping transposon insertions and self-insertions
Published in
Mobile DNA, February 2016
DOI 10.1186/s13100-016-0061-0
Pubmed ID
Authors

Alexandru Al. Ecovoiu, Iulian Constantin Ghionoiu, Andrei Mihai Ciuca, Attila Cristian Ratiu

Abstract

A critical topic of insertional mutagenesis experiments performed on model organisms is mapping the hits of artificial transposons (ATs) at nucleotide level accuracy. Mapping errors may occur when sequencing artifacts or mutations as single nucleotide polymorphisms (SNPs) and small indels are present very close to the junction between a genomic sequence and a transposon inverted repeat (TIR). Another particular item of insertional mutagenesis is mapping of the transposon self-insertions and, to our best knowledge, there is no publicly available mapping tool designed to analyze such molecular events. We developed Genome ARTIST, a pairwise gapped aligner tool which works out both issues by means of an original, robust mapping strategy. Genome ARTIST is not designed to use next-generation sequencing (NGS) data but to analyze ATs insertions obtained in small to medium-scale mutagenesis experiments. Genome ARTIST employs a heuristic approach to find DNA sequence similarities and harnesses a multi-step implementation of a Smith-Waterman adapted algorithm to compute the mapping alignments. The experience is enhanced by easily customizable parameters and a user-friendly interface that describes the genomic landscape surrounding the insertion. Genome ARTIST is functional with many genomes of bacteria and eukaryotes available in Ensembl and GenBank repositories. Our tool specifically harnesses the sequence annotation data provided by FlyBase for Drosophila melanogaster (the fruit fly), which enables mapping of insertions relative to various genomic features such as natural transposons. Genome ARTIST was tested against other alignment tools using relevant query sequences derived from the D. melanogaster and Mus musculus (mouse) genomes. Real and simulated query sequences were also comparatively inquired, revealing that Genome ARTIST is a very robust solution for mapping transposon insertions. Genome ARTIST is a stand-alone user-friendly application, designed for high-accuracy mapping of transposon insertions and self-insertions. The tool is also useful for routine aligning assessments like detection of SNPs or checking the specificity of primers and probes. Genome ARTIST is an open source software and is available for download at www.genomeartist.ro and at GitHub (https://github.com/genomeartist/genomeartist ).

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 4%
France 1 2%
United States 1 2%
Unknown 50 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 28%
Student > Master 8 15%
Student > Bachelor 6 11%
Student > Doctoral Student 4 7%
Student > Ph. D. Student 4 7%
Other 12 22%
Unknown 5 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 43%
Biochemistry, Genetics and Molecular Biology 18 33%
Computer Science 2 4%
Social Sciences 2 4%
Mathematics 1 2%
Other 2 4%
Unknown 6 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2022.
All research outputs
#4,400,800
of 24,323,943 outputs
Outputs from Mobile DNA
#113
of 345 outputs
Outputs of similar age
#73,726
of 405,953 outputs
Outputs of similar age from Mobile DNA
#3
of 6 outputs
Altmetric has tracked 24,323,943 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 345 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,953 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.