↓ Skip to main content

Impact of data resolution on three-dimensional structure inference methods

Overview of attention for article published in BMC Bioinformatics, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
5 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of data resolution on three-dimensional structure inference methods
Published in
BMC Bioinformatics, February 2016
DOI 10.1186/s12859-016-0894-z
Pubmed ID
Authors

Jincheol Park, Shili Lin

Abstract

Assays that are capable of detecting genome-wide chromatin interactions have produced massive amount of data and led to great understanding of the chromosomal three-dimensional (3D) structure. As technology becomes more sophisticated, higher-and-higher resolution data are being produced, going from the initial 1 Megabases (Mb) resolution to the current 10 Kilobases (Kb) or even 1 Kb resolution. The availability of genome-wide interaction data necessitates development of analytical methods to recover the underlying 3D spatial chromatin structure, but challenges abound. Most of the methods were proposed for analyzing data at low resolution (1 Mb). Their behaviors are thus unknown for higher resolution data. For such data, one of the key features is the high proportion of "0" contact counts among all available data, in other words, the excess of zeros. To address the issue of excess of zeros, in this paper, we propose a truncated Random effect EXpression (tREX) method that can handle data at various resolutions. We then assess the performance of tREX and a number of leading existing methods for recovering the underlying chromatin 3D structure. This was accomplished by creating in-silico data to mimic multiple levels of resolution and submit the methods to a "stress test". Finally, we applied tREX and the comparison methods to a Hi-C dataset for which FISH measurements are available to evaluate estimation accuracy. The proposed tREX method achieves consistently good performance in all 30 simulated settings considered. It is not only robust to resolution level and underlying parameters, but also insensitive to model misspecification. This conclusion is based on observations made in terms of 3D structure estimation accuracy and preservation of topologically associated domains. Application of the methods to the human lymphoblastoid cell line data on chromosomes 14 and 22 further substantiates the superior performance of tREX: the constructed 3D structure from tREX is consistent with the FISH measurements, and the corresponding distances predicted by tREX have higher correlation with the FISH measurements than any of the comparison methods. An open-source R-package is available at http://www.stat.osu.edu/~statgen/Software/tRex .

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
France 1 2%
Canada 1 2%
Russia 1 2%
Spain 1 2%
United States 1 2%
Unknown 41 87%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 23%
Student > Master 9 19%
Student > Ph. D. Student 8 17%
Professor 5 11%
Student > Doctoral Student 3 6%
Other 5 11%
Unknown 6 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 30%
Agricultural and Biological Sciences 13 28%
Computer Science 5 11%
Mathematics 4 9%
Social Sciences 4 9%
Other 1 2%
Unknown 6 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 February 2016.
All research outputs
#14,834,976
of 22,844,985 outputs
Outputs from BMC Bioinformatics
#5,046
of 7,289 outputs
Outputs of similar age
#221,845
of 397,355 outputs
Outputs of similar age from BMC Bioinformatics
#104
of 141 outputs
Altmetric has tracked 22,844,985 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,289 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 397,355 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 141 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.