↓ Skip to main content

Netter: re-ranking gene network inference predictions using structural network properties

Overview of attention for article published in BMC Bioinformatics, February 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
35 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Netter: re-ranking gene network inference predictions using structural network properties
Published in
BMC Bioinformatics, February 2016
DOI 10.1186/s12859-016-0913-0
Pubmed ID
Authors

Joeri Ruyssinck, Piet Demeester, Tom Dhaene, Yvan Saeys

Abstract

Many algorithms have been developed to infer the topology of gene regulatory networks from gene expression data. These methods typically produce a ranking of links between genes with associated confidence scores, after which a certain threshold is chosen to produce the inferred topology. However, the structural properties of the predicted network do not resemble those typical for a gene regulatory network, as most algorithms only take into account connections found in the data and do not include known graph properties in their inference process. This lowers the prediction accuracy of these methods, limiting their usability in practice. We propose a post-processing algorithm which is applicable to any confidence ranking of regulatory interactions obtained from a network inference method which can use, inter alia, graphlets and several graph-invariant properties to re-rank the links into a more accurate prediction. To demonstrate the potential of our approach, we re-rank predictions of six different state-of-the-art algorithms using three simple network properties as optimization criteria and show that Netter can improve the predictions made on both artificially generated data as well as the DREAM4 and DREAM5 benchmarks. Additionally, the DREAM5 E.coli. community prediction inferred from real expression data is further improved. Furthermore, Netter compares favorably to other post-processing algorithms and is not restricted to correlation-like predictions. Lastly, we demonstrate that the performance increase is robust for a wide range of parameter settings. Netter is available at http://bioinformatics.intec.ugent.be . Network inference from high-throughput data is a long-standing challenge. In this work, we present Netter, which can further refine network predictions based on a set of user-defined graph properties. Netter is a flexible system which can be applied in unison with any method producing a ranking from omics data. It can be tailored to specific prior knowledge by expert users but can also be applied in general uses cases. Concluding, we believe that Netter is an interesting second step in the network inference process to further increase the quality of prediction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
United Kingdom 1 3%
Singapore 1 3%
Sri Lanka 1 3%
United States 1 3%
Unknown 30 86%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 29%
Student > Ph. D. Student 8 23%
Student > Master 4 11%
Student > Bachelor 3 9%
Professor > Associate Professor 3 9%
Other 6 17%
Unknown 1 3%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 46%
Computer Science 10 29%
Biochemistry, Genetics and Molecular Biology 3 9%
Physics and Astronomy 1 3%
Sports and Recreations 1 3%
Other 1 3%
Unknown 3 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 February 2016.
All research outputs
#13,222,124
of 22,844,985 outputs
Outputs from BMC Bioinformatics
#4,008
of 7,289 outputs
Outputs of similar age
#188,385
of 400,364 outputs
Outputs of similar age from BMC Bioinformatics
#80
of 142 outputs
Altmetric has tracked 22,844,985 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,289 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,364 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 142 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.