↓ Skip to main content

Peripheral blood derived mononuclear cells enhance osteoarthritic human chondrocyte migration

Overview of attention for article published in Arthritis Research & Therapy, August 2015
Altmetric Badge

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Peripheral blood derived mononuclear cells enhance osteoarthritic human chondrocyte migration
Published in
Arthritis Research & Therapy, August 2015
DOI 10.1186/s13075-015-0709-z
Pubmed ID
Authors

Niina Hopper, Frances Henson, Roger Brooks, Erden Ali, Neil Rushton, John Wardale

Abstract

A major problem in cartilage repair is the lack of chondrogenic cells migrating from healthy tissue into defects. Cartilage is essentially avascular and therefore its healing is not considered to involve mononuclear cells. Peripheral blood derived mononuclear cells (PBMC) offer a readily available autologous cell source for clinical use and therefore this study was designed to evaluate the effects of PBMCs on chondrocytes and cartilage. Human primary chondrocytes and cartilage tissue explants were taken from patients undergoing total knee replacement (n = 17). Peripheral blood samples were obtained from healthy volunteers (n = 12) and mononuclear cells were isolated by density-gradient centrifugation. Cell migration and chemokinetic potential were measured using a scratch assay, xCELLigence and CyQuant assay. PCR array and quantitative PCR was used to evaluate mRNA expression of 87 cell motility and/or chondrogenic genes. The chondrocyte migration rate was 2.6 times higher at 3 hour time point (p < 0.0001) and total number of migrating chondrocytes was 9.7 times higher (p < 0.0001) after three day indirect PBMC stimulus and 8.2 times higher (p < 0.0001) after three day direct co-culture with PBMCs. A cartilage explant model confirmed that PBMCs also exert a chemokinetic role on ex vivo tissue. PBMC stimulation was found to significantly upregulate the mRNA levels of 2 chondrogenic genes; collagen type II (COL2A1 600-fold, p < 0.0001) and SRY box 9 (SOX9 30-fold, p < 0.0001) and the mRNA levels of 7 genes central in cell motility and migration were differentially regulated by 24h PBMC stimulation. The results support the concept that PBMC treatment enhances chondrocyte migration without suppressing the chondrogenic phenotype possibly via mechanistic pathways involving MMP9 and IGF1. In the future, peripheral blood mononuclear cells could be used as an autologous point-ofcare treatment to attract native chondrocytes from the diseased tissue to aid in cartilage repair.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 63 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 28%
Student > Bachelor 9 14%
Researcher 7 11%
Student > Master 6 9%
Student > Doctoral Student 4 6%
Other 6 9%
Unknown 14 22%
Readers by discipline Count As %
Medicine and Dentistry 13 20%
Biochemistry, Genetics and Molecular Biology 12 19%
Agricultural and Biological Sciences 10 16%
Nursing and Health Professions 3 5%
Immunology and Microbiology 3 5%
Other 8 13%
Unknown 15 23%