↓ Skip to main content

Changes in Tumorigenesis- and Angiogenesis-related Gene Transcript Abundance Profiles in Ovarian Cancer Detected by Tailored High Density cDNA Arrays

Overview of attention for article published in Molecular Medicine, September 2000
Altmetric Badge

Mentioned by

patent
4 patents

Citations

dimensions_citation
91 Dimensions

Readers on

mendeley
26 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Changes in Tumorigenesis- and Angiogenesis-related Gene Transcript Abundance Profiles in Ovarian Cancer Detected by Tailored High Density cDNA Arrays
Published in
Molecular Medicine, September 2000
DOI 10.1007/bf03402191
Pubmed ID
Authors

Ann-Marie Martoglio, Brian D. M. Tom, Michael Starkey, Anthony N. Corps, D. Stephen Charnock-Jones, Stephen K. Smith

Abstract

Complementary DNA array analysis of gene expression has a potential application for clinical diagnosis of disease processes. However, accessibility, affordability, reproducibility of results, and management of the data generated remain issues of concern. Use of cDNA arrays tailored for studies of specific pathways, tissues, or disease states may render a cost- and time-effective method to define potential hallmark genotype alterations. We produced a 332-membered human cDNA array on nylon membranes tailored for studies of angiogenesis and tumorigenesis in reproductive disease. We tested the system for reproducibility using a novel statistical approach for analysis of array data and employed the arrays to investigate gene expression alterations in ovarian cancer. Intra-assay analysis and removal of agreement outliers was shown to be a critical step prior to interpretation of cDNA array data. The system revealed highly reproducible results, with intermembrane coefficient of reproducibility of +/- 0.98. Comparison of placental and ovarian sample data confirmed expected differences in angiogenic profiles and tissue-specific markers, such as human placental lactogen (hPL). Analysis of expression profiles of five normal ovary and four poorly differentiated serous papillary ovarian adenocarcinoma samples revealed an overall increase in angiogenesis-related markers, including vascular endothelial growth factor (VEGF) and angiopoietin-1 in the diseased tissue. These were accompanied by increases in immune response mediators (e.g. HLA-DR, Ron), apoptotic and neoplastic markers (e.g. BAD protein, b-myb), and novel potential markers of ovarian cancer, such as cofilin, moesin, and neuron-restrictive silencer factor (REST) protein. In-house production of tailored cDNA arrays, coupled to comprehensive analysis of resulting hybridization profiles, provides an accessible, reliable, and highly effective method of applying array technology to study disease processes. In the ovary, abundance of specific tumor markers, increased macrophage recruitment mediators, a late-stage angiogenesis profile, and the presence of chemoresistance-related markers distinguished normal and advanced ovarian cancer tissue samples. Detection of such parallel changes in pathway- and tissue-specific markers may prove a hallmark ready for application in reproductive disease diagnostic and therapeutic developments.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Finland 1 4%
Unknown 25 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 19%
Student > Ph. D. Student 4 15%
Other 3 12%
Professor > Associate Professor 3 12%
Professor 2 8%
Other 7 27%
Unknown 2 8%
Readers by discipline Count As %
Medicine and Dentistry 10 38%
Agricultural and Biological Sciences 7 27%
Mathematics 2 8%
Biochemistry, Genetics and Molecular Biology 2 8%
Physics and Astronomy 1 4%
Other 0 0%
Unknown 4 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 June 2013.
All research outputs
#8,537,346
of 25,377,790 outputs
Outputs from Molecular Medicine
#419
of 1,206 outputs
Outputs of similar age
#12,949
of 37,745 outputs
Outputs of similar age from Molecular Medicine
#3
of 9 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,206 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.6. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 37,745 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.