↓ Skip to main content

Tandem amino acid repeats in the green anole (Anolis carolinensis) and other squamates may have a role in increasing genetic variability

Overview of attention for article published in BMC Genomics, February 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tandem amino acid repeats in the green anole (Anolis carolinensis) and other squamates may have a role in increasing genetic variability
Published in
BMC Genomics, February 2016
DOI 10.1186/s12864-016-2430-y
Pubmed ID
Authors

Riga Wu, Qingfeng Liu, Peng Zhang, Dan Liang

Abstract

Tandem amino acid repeats are characterised by the consecutive recurrence of a single amino acid. They exhibit high rates of length mutations in addition to point mutations and have been proposed to be involved in genetic plasticity. Squamate reptiles (lizards and snakes) diversify in both morphology and physiology. The underlying mechanism is yet to be understood. In a previous phylogenomic analysis of reptiles, the density of tandem repeats in an anole lizard diverged heavily from that of the other reptiles. To gain further insight into the tandem amino acid repeats in squamates, we analysed the repeat content in the green anole (Anolis carolinensis) proteome and compared the amino acid repeats in a large orthologous protein data set from six vertebrates (the Western clawed frog, the green anole, the Chinese softshell turtle, the zebra finch, mouse and human). Our results revealed that the number of amino acid repeats in the green anole exceeded those found in the other five species studied. Species-only repeats were found in high proportion in the green anole but not in the other five species, suggesting that the green anole had gained many amino acid repeats in either the Anolis or the squamate lineage. Since the amino acid repeat containing genes in the green anole were highly enriched in genes related to transcription and development, an important family of developmental genes, i.e., the Hox family, was further studied in a wide collection of squamates. Abundant amino acid repeats were also observed, implying the general high tolerance of amino acid repeats in squamates. A particular enrichment of amino acid repeats was observed in the central class Hox genes that are known to be responsible for defining cervical to lumbar regions. Our study suggests that the abundant amino acid repeats in the green anole, and possibly in other squamates, may play a role in increasing the genetic variability, and contribute to the evolutionary diversity of this clade.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 17%
Student > Master 3 17%
Student > Postgraduate 2 11%
Student > Doctoral Student 1 6%
Librarian 1 6%
Other 3 17%
Unknown 5 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 22%
Agricultural and Biological Sciences 4 22%
Computer Science 1 6%
Economics, Econometrics and Finance 1 6%
Social Sciences 1 6%
Other 0 0%
Unknown 7 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 February 2016.
All research outputs
#13,106,690
of 22,846,662 outputs
Outputs from BMC Genomics
#4,726
of 10,656 outputs
Outputs of similar age
#186,329
of 400,467 outputs
Outputs of similar age from BMC Genomics
#117
of 257 outputs
Altmetric has tracked 22,846,662 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,656 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,467 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 257 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.