↓ Skip to main content

RETRACTED ARTICLE: Mutation pattern is an influential factor on functional mutation rates in cancer

Overview of attention for article published in Cancer Cell International, February 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RETRACTED ARTICLE: Mutation pattern is an influential factor on functional mutation rates in cancer
Published in
Cancer Cell International, February 2016
DOI 10.1186/s12935-016-0278-5
Pubmed ID
Authors

Chuance Du, Xiaoyuan Wu, Jia Li

Abstract

Mutation rates are consistently varied in cancer genome and play an important role in tumorigenesis, however, little has been known about their function potential and impact on the distribution of functional mutations. In this study, we investigated genomic features which affect mutation pattern and the function importance of mutation pattern in cancer. Somatic mutations of clear-cell renal cell carcinoma, liver cancer, lung cancer and melanoma and single nucleotide polymorphisms (SNPs) were intersected with 54 distinct genomic features. Somatic mutation and SNP densities were then computed for each feature type. We constructed 2856 1-Mb windows, in which each row (1-Mb window) contains somatic mutation, SNP densities and 54 feature vectors. Correlation analyses were conducted between somatic mutation, SNP densities and each feature vector. We also built two random forest models, namely somatic mutation model (CSM) and SNP model to predict somatic mutation and SNP densities on a 1-Kb scale. The relation of CSM and SNP scores was further analyzed with the distributions of deleterious coding variants predicted by SIFT and Mutation Assessor, non-coding functional variants evaluated with FunSeq 2 and GWAVA and disease-causing variants from HGMD and ClinVar databases. We observed a wide range of genomic features which affect local mutation rates, such as replication time, transcription levels, histone marks and regulatory elements. Repressive histone marks, replication time and promoter contributed most to the CSM models, while, recombination rate and chromatin organizations were most important for the SNP model. We showed low mutated regions preferentially have higher densities of deleterious coding mutations, higher average scores of non-coding variants, higher fraction of functional regions and higher enrichment of disease-causing variants as compared to high mutated regions. Somatic mutation densities vary largely across cancer genome, mutation frequency is a major indication of function and influence on the distribution of functional mutations in cancer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 6%
Unknown 15 94%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 5 31%
Student > Master 3 19%
Other 2 13%
Student > Bachelor 2 13%
Student > Ph. D. Student 2 13%
Other 2 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 25%
Agricultural and Biological Sciences 4 25%
Medicine and Dentistry 4 25%
Computer Science 2 13%
Psychology 1 6%
Other 0 0%
Unknown 1 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2017.
All research outputs
#18,439,846
of 22,846,662 outputs
Outputs from Cancer Cell International
#1,088
of 1,801 outputs
Outputs of similar age
#290,191
of 400,363 outputs
Outputs of similar age from Cancer Cell International
#7
of 15 outputs
Altmetric has tracked 22,846,662 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,801 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,363 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.