↓ Skip to main content

Genome-wide studies reveal novel and distinct biological pathways regulated by SIN3 isoforms

Overview of attention for article published in BMC Genomics, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide studies reveal novel and distinct biological pathways regulated by SIN3 isoforms
Published in
BMC Genomics, February 2016
DOI 10.1186/s12864-016-2428-5
Pubmed ID
Authors

Nirmalya Saha, Mengying Liu, Ambikai Gajan, Lori A. Pile

Abstract

The multisubunit SIN3 complex is a global transcriptional regulator. In Drosophila, a single Sin3A gene encodes different isoforms of SIN3, of which SIN3 187 and SIN3 220 are the major isoforms. Previous studies have demonstrated functional non-redundancy of SIN3 isoforms. The role of SIN3 isoforms in regulating distinct biological processes, however, is not well characterized. We established a Drosophila S2 cell culture model system in which cells predominantly express either SIN3 187 or SIN3 220. To identify genomic targets of SIN3 isoforms, we performed chromatin immunoprecipitation followed by deep sequencing. Our data demonstrate that upon overexpression of SIN3 187, the level of SIN3 220 decreased and the large majority of genomic sites bound by SIN3 220 were instead bound by SIN3 187. We used RNA-seq to identify genes regulated by the expression of one isoform or the other. In S2 cells, which predominantly express SIN3 220, we found that SIN3 220 directly regulates genes involved in metabolism and cell proliferation. We also determined that SIN3 187 regulates a unique set of genes and likely modulates expression of many genes also regulated by SIN3 220. Interestingly, biological pathways enriched for genes specifically regulated by SIN3 187 strongly suggest that this isoform plays an important role during the transition from the embryonic to the larval stage of development. These data establish the role of SIN3 isoforms in regulating distinct biological processes. This study substantially contributes to our understanding of the complexity of gene regulation by SIN3.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Canada 1 3%
Unknown 37 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 21%
Student > Doctoral Student 5 13%
Student > Ph. D. Student 5 13%
Student > Bachelor 4 10%
Other 3 8%
Other 8 21%
Unknown 6 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 46%
Agricultural and Biological Sciences 11 28%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Environmental Science 1 3%
Chemistry 1 3%
Other 0 0%
Unknown 7 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 March 2016.
All research outputs
#13,901,936
of 23,577,654 outputs
Outputs from BMC Genomics
#5,121
of 10,777 outputs
Outputs of similar age
#198,230
of 404,151 outputs
Outputs of similar age from BMC Genomics
#128
of 245 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,777 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 404,151 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 245 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.