↓ Skip to main content

Setting priorities in health research using the model proposed by the World Health Organization: development of a quantitative methodology using tuberculosis in South Africa as a worked example

Overview of attention for article published in Health Research Policy and Systems, February 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Setting priorities in health research using the model proposed by the World Health Organization: development of a quantitative methodology using tuberculosis in South Africa as a worked example
Published in
Health Research Policy and Systems, February 2016
DOI 10.1186/s12961-016-0081-8
Pubmed ID
Authors

Damian Hacking, Susan Cleary

Abstract

Setting priorities is important in health research given the limited resources available for research. Various guidelines exist to assist in the priority setting process; however, priority setting still faces significant challenges such as the clear ranking of identified priorities. The World Health Organization (WHO) proposed a Disability Adjusted Life Year (DALY)-based model to rank priorities by research area (basic, health systems and biomedical) by dividing the DALYs into 'unavertable with existing interventions', 'avertable with improved efficiency' and 'avertable with existing but non-cost-effective interventions', respectively. However, the model has conceptual flaws and no clear methodology for its construction. Therefore, the aim of this paper was to amend the model to address these flaws, and develop a clear methodology by using tuberculosis in South Africa as a worked example. An amended model was constructed to represent total DALYs as the product of DALYs per person and absolute burden of disease. These figures were calculated for all countries from WHO datasets. The lowest figures achieved by any country were assumed to represent 'unavertable with existing interventions' if extrapolated to South Africa. The ratio of 'cost per patient treated' (adjusted for purchasing power and outcome weighted) between South Africa and the best country was used to calculate the 'avertable with improved efficiency section'. Finally, 'avertable with existing but non-cost-effective interventions' was calculated using Disease Control Priorities Project efficacy data, and the ratio between the best intervention and South Africa's current intervention, irrespective of cost. The amended model shows that South Africa has a tuberculosis burden of 1,009,837.3 DALYs; 0.009% of DALYs are unavertable with existing interventions and 96.3% of DALYs could be averted with improvements in efficiency. Of the remaining DALYs, a further 56.9% could be averted with existing but non-cost-effective interventions. The amended model was successfully constructed using limited data sources. The generalizability of the data used is the main limitation of the model. More complex formulas are required to deal with such potential confounding variables; however, the results act as starting point for development of a more robust model.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 19%
Researcher 8 14%
Student > Postgraduate 4 7%
Student > Ph. D. Student 4 7%
Student > Doctoral Student 4 7%
Other 11 19%
Unknown 17 29%
Readers by discipline Count As %
Medicine and Dentistry 15 25%
Social Sciences 7 12%
Nursing and Health Professions 5 8%
Business, Management and Accounting 3 5%
Immunology and Microbiology 3 5%
Other 8 14%
Unknown 18 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 February 2016.
All research outputs
#12,945,022
of 22,849,304 outputs
Outputs from Health Research Policy and Systems
#927
of 1,215 outputs
Outputs of similar age
#182,909
of 400,363 outputs
Outputs of similar age from Health Research Policy and Systems
#17
of 23 outputs
Altmetric has tracked 22,849,304 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,215 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,363 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.