↓ Skip to main content

Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair

Overview of attention for article published in Stem Cell Research & Therapy, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
4 X users
patent
1 patent

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair
Published in
Stem Cell Research & Therapy, February 2016
DOI 10.1186/s13287-016-0290-7
Pubmed ID
Authors

Yueying Li, Tie Liu, Nicholas Van Halm-Lutterodt, JiaYu Chen, Qingjun Su, Yong Hai

Abstract

An attempt was made to reprogram peripheral blood cells into human induced pluripotent stem cell (hiPSCs) as a new cell source for cartilage repair. We generated chondrogenic lineage from human peripheral blood via hiPSCs using an integration-free method. Peripheral blood cells were either obtained from a human blood bank or freshly collected from volunteers. After transforming peripheral blood cells into iPSCs, the newly derived iPSCs were further characterized through karyotype analysis, pluripotency gene expression and cell differentiation ability. iPSCs were differentiated through multiple steps, including embryoid body formation, hiPSC-mesenchymal stem cell (MSC)-like cell expansion, and chondrogenic induction for 21 days. Chondrocyte phenotype was then assessed by morphological, histological and biochemical analysis, as well as the chondrogenic expression. hiPSCs derived from peripheral blood cells were successfully generated, and were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. Flow cytometric analysis showed that MSC markers CD73 and CD105 were present in monolayer cultured hiPSC-MSC-like cells. Both alcian blue and toluidine blue staining of hiPSC-MSC-chondrogenic pellets showed as positive. Immunohistochemistry of collagen II and X staining of the pellets were also positive. The sulfated glycosaminoglycan content was significantly increased, and the expression levels of the chondrogenic markers COL2, COL10, COL9 and AGGRECAN were significantly higher in chondrogenic pellets than in undifferentiated cells. These results indicated that peripheral blood cells could be a potential source for differentiation into chondrogenic lineage in vitro via generation of mesenchymal progenitor cells. This study supports the potential applications of utilizing peripheral blood cells in generating seed cells for cartilage regenerative medicine in a patient-specific and cost-effective approach.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 20%
Student > Master 12 20%
Researcher 9 15%
Student > Bachelor 5 8%
Professor > Associate Professor 3 5%
Other 7 11%
Unknown 13 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 16%
Medicine and Dentistry 10 16%
Agricultural and Biological Sciences 7 11%
Materials Science 4 7%
Engineering 3 5%
Other 9 15%
Unknown 18 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 January 2020.
All research outputs
#1,640,833
of 23,574,345 outputs
Outputs from Stem Cell Research & Therapy
#87
of 2,497 outputs
Outputs of similar age
#27,773
of 299,118 outputs
Outputs of similar age from Stem Cell Research & Therapy
#5
of 34 outputs
Altmetric has tracked 23,574,345 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,497 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,118 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.