↓ Skip to main content

AMP-activated protein kinase contributes to zinc-induced neuronal death via activation by LKB1 and induction of Bim in mouse cortical cultures

Overview of attention for article published in Molecular Brain, February 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
1 X user
patent
1 patent

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
AMP-activated protein kinase contributes to zinc-induced neuronal death via activation by LKB1 and induction of Bim in mouse cortical cultures
Published in
Molecular Brain, February 2016
DOI 10.1186/s13041-016-0194-6
Pubmed ID
Authors

Jae-Won Eom, Jong-Min Lee, Jae-Young Koh, Yang-Hee Kim

Abstract

We reported that zinc neurotoxicity, a key mechanism of ischemic neuronal death, was mediated by poly ADP-ribose polymerase (PARP) over-activation following NAD(+)/ATP depletion in cortical cultures. Because AMP-activated protein kinase (AMPK) can be activated by ATP depletion, and AMPK plays a key role in excitotoxicity and ischemic neuronal death, we examined whether AMPK could be involved in zinc neurotoxicity in mouse cortical neuronal cultures. Compound C, an AMPK inhibitor, significantly attenuated zinc-induced neuronal death. Activation of AMPK was detected beginning 2 h after a 10-min exposure of mouse cortical neurons to 300 μM zinc, although a significant change in AMP level was not detected until 4 h after zinc treatment. Thus, AMPK activation might not have been induced by an increase in intracellular AMP in zinc neurotoxicity. Furthermore, we observed that liver kinase B1 (LKB1) but not Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ), was involved in AMPK activation. Although STO-609, a chemical inhibitor of CaMKKβ, significantly attenuated zinc neurotoxicity, zinc-induced AMPK activation was not affected, which suggested that CaMKKβ was not involved in AMPK activation. Knockdown of LKB1 by siRNA significantly reduced zinc neurotoxicity, as well as zinc-induced AMPK activation, which indicated a possible role for LKB1 as an upstream kinase for AMPK activation. In addition, mRNA and protein levels of Bim, a pro-apoptotic Bcl-2 family member, were noticeably increased by zinc in an AMPK-dependent manner. Finally, caspase-3 activation in zinc-induced neuronal death was mediated by LKB1 and AMPK activation. The results suggested that AMPK mediated zinc-induced neuronal death via up-regulation of Bim and activation of caspase-3. Rapid activation of AMPK was detected after exposure of cortical neuronal cultures to zinc, which was induced by LKB1 activation but not increased intracellular AMP levels or CaMKKβ activation. Hence, blockade of AMPK in the brain may protect against zinc neurotoxicity, which is likely to occur after acute brain injury.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 35%
Student > Bachelor 3 13%
Researcher 2 9%
Student > Master 2 9%
Student > Doctoral Student 1 4%
Other 2 9%
Unknown 5 22%
Readers by discipline Count As %
Medicine and Dentistry 4 17%
Biochemistry, Genetics and Molecular Biology 4 17%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Neuroscience 2 9%
Nursing and Health Professions 1 4%
Other 4 17%
Unknown 6 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 January 2024.
All research outputs
#7,863,368
of 25,177,382 outputs
Outputs from Molecular Brain
#362
of 1,191 outputs
Outputs of similar age
#121,630
of 412,225 outputs
Outputs of similar age from Molecular Brain
#15
of 40 outputs
Altmetric has tracked 25,177,382 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 1,191 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 412,225 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.