↓ Skip to main content

Using synthetic biology to increase nitrogenase activity

Overview of attention for article published in Microbial Cell Factories, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
101 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Using synthetic biology to increase nitrogenase activity
Published in
Microbial Cell Factories, February 2016
DOI 10.1186/s12934-016-0442-6
Pubmed ID
Authors

Xin-Xin Li, Qi Liu, Xiao-Meng Liu, Hao-Wen Shi, San-Feng Chen

Abstract

Nitrogen fixation has been established in protokaryotic model Escherichia coli by transferring a minimal nif gene cluster composed of 9 genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV) from Paenibacillus sp. WLY78. However, the nitrogenase activity in the recombinant E. coli 78-7 is only 10 % of that observed in wild-type Paenibacillus. Thus, it is necessary to increase nitrogenase activity through synthetic biology. In order to increase nitrogenase activity in heterologous host, a total of 28 selected genes from Paenibacillus sp. WLY78 and Klebsiella oxytoca were placed under the control of Paenibacillus nif promoter in two different vectors and then they are separately or combinationally transferred to the recombinant E. coli 78-7. Our results demonstrate that Paenibacillus suf operon (Fe-S cluster assembly) and the potential electron transport genes pfoAB, fldA and fer can increase nitrogenase activity. Also, K. oxytoca nifSU (Fe-S cluster assembly) and nifFJ (electron transport specific for nitrogenase) can increase nitrogenase activity. Especially, the combined assembly of the potential Paenibacillus electron transporter genes (pfoABfldA) with K. oxytoca nifSU recovers 50.1 % of wild-type (Paenibacillus) activity. However, K. oxytoca nifWZM and nifQ can not increase activity. The combined assembly of the potential Paenibacillus electron transporter genes (pfoABfldA) with K. oxytoca nifSU recovers 50.1 % of wild-type (Paenibacillus) activity in the recombinant E. coli 78-7. Our results will provide valuable insights for the enhancement of nitrogenase activity in heterogeneous host and will provide guidance for engineering cereal plants with minimal nif genes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 <1%
Unknown 100 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 21%
Researcher 21 21%
Student > Bachelor 14 14%
Student > Master 11 11%
Student > Postgraduate 4 4%
Other 9 9%
Unknown 21 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 34%
Biochemistry, Genetics and Molecular Biology 28 28%
Chemistry 5 5%
Immunology and Microbiology 2 2%
Engineering 2 2%
Other 7 7%
Unknown 23 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 February 2016.
All research outputs
#13,459,901
of 22,851,489 outputs
Outputs from Microbial Cell Factories
#820
of 1,603 outputs
Outputs of similar age
#142,840
of 297,882 outputs
Outputs of similar age from Microbial Cell Factories
#14
of 34 outputs
Altmetric has tracked 22,851,489 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,603 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,882 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.