↓ Skip to main content

Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis

Overview of attention for article published in Epigenetics & Chromatin, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
11 X users

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
137 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis
Published in
Epigenetics & Chromatin, February 2016
DOI 10.1186/s13072-016-0057-5
Pubmed ID
Authors

Ning Liu, Zoya Avramova

Abstract

Plant genes that provide a different response to a similar dehydration stress illustrate the concept of transcriptional 'dehydration stress memory'. Pre-exposing a plant to a biotic stress or a stress-signaling hormone may increase transcription from response genes in a future stress, a phenomenon known as 'gene priming'. Although known that primed transcription is preceded by accumulation of H3K4me3 marks at primed genes, what mechanism provides for their appearance before the transcription was unclear. How augmented transcription is achieved, whether/how the two memory phenomena are connected at the transcriptional level, and whether similar molecular and/or epigenetic mechanisms regulate them are fundamental questions about the molecular mechanisms regulating gene expression. Although the stress hormone jasmonic acid (JA) was unable to induce transcription of tested dehydration stress response genes, it strongly potentiated transcription from specific ABA-dependent 'memory' genes. We elucidate the molecular mechanism causing their priming, demonstrate that stalled RNA polymerase II and H3K4me3 accumulate as epigenetic marks at the JA-primed ABA-dependent genes before actual transcription, and describe how these events occur mechanistically. The transcription factor MYC2 binds to the genes in response to both dehydration stress and to JA and determines the specificity of the priming. The MEDIATOR subunit MED25 links JA-priming with dehydration stress response pathways at the transcriptional level. Possible biological relevance of primed enhanced transcription from the specific memory genes is discussed. The biotic stress hormone JA potentiated transcription from a specific subset of ABA-response genes, revealing a novel aspect of the JA- and ABA-signaling pathways' interactions. H3K4me3 functions as an epigenetic mark at JA-primed dehydration stress response genes before transcription. We emphasize that histone and epigenetic marks are not synonymous and argue that distinguishing between them is important for understanding the role of chromatin marks in genes' transcriptional performance. JA-priming, specifically of dehydration stress memory genes encoding cell/membrane protective functions, suggests it is an adaptational response to two different environmental stresses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 137 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
New Zealand 1 <1%
Unknown 136 99%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 28 20%
Student > Ph. D. Student 23 17%
Researcher 23 17%
Student > Bachelor 15 11%
Student > Master 12 9%
Other 17 12%
Unknown 19 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 66 48%
Biochemistry, Genetics and Molecular Biology 40 29%
Environmental Science 2 1%
Medicine and Dentistry 2 1%
Social Sciences 1 <1%
Other 2 1%
Unknown 24 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2016.
All research outputs
#5,660,981
of 22,851,489 outputs
Outputs from Epigenetics & Chromatin
#223
of 568 outputs
Outputs of similar age
#78,833
of 298,866 outputs
Outputs of similar age from Epigenetics & Chromatin
#7
of 12 outputs
Altmetric has tracked 22,851,489 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 568 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,866 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.