↓ Skip to main content

A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species
Published in
Biotechnology for Biofuels and Bioproducts, February 2016
DOI 10.1186/s13068-016-0457-6
Pubmed ID
Authors

Antony P. Martin, William M. Palmer, Christopher Brown, Christin Abel, John E. Lunn, Robert T. Furbank, Christopher P. L. Grof

Abstract

Recently, there has been interest in establishing a monocot C4 model species with a small genome, short lifecycle, and capacity for genetic transformation. Setaria viridis has been adopted to fill this role, since reports of Agrobacterium-mediated transformation in 2010, and sequencing of its genome in 2012. To date, S. viridis has primarily been used to further our understanding of C4 photosynthesis, but is also an ideal system for the study of biomass crops, which are almost exclusively C4 panicoid grasses. Biogenesis of stem tissue, its cell wall composition, and soluble sugar content are important determinants of bioenergy crop yields. Here we show that a developing S. viridis internode is a valuable experimental system for gene discovery in relation to these important bioenergy feedstock traits. The rate of maximal stem biomass accumulation in S. viridis A10 under long day growth was at the half-head emergence developmental stage. At this stage of development, internode 5 (of 7) was found to be rapidly expanding with an active meristem, a zone of cell expansion (primary cell walls), a transitional zone where cell expansion ceased and secondary cell wall deposition was initiated, and a mature zone that was actively accumulating soluble sugars. A simple method for identifying these zones was established allowing rapid dissection and snap-freezing for RNAseq analysis. A transcriptome profile was generated for each zone showing a transition from cell division and nucleic acid synthesis/processing in the meristem, to metabolism, energy synthesis, and primary cell wall synthesis in the cell expansion zone, to secondary cell wall synthesis in the transitional zone, to sugar transport, and photosynthesis in the mature zone. The identification of these zones has provided a valuable experimental system for investigating key bioenergy traits, including meristematic activity, cell wall biosynthesis, and soluble sugar accumulation, in a C4 panicoid grass that has genetic resources, a short life cycle, and small stature allowing controlled experimental conditions in growth cabinets. Here we have presented a comprehensive map of gene expression and metabolites in this experimental system to facilitate gene discovery and controlled hypothesis testing for bioenergy research in S. viridis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 77 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 17%
Student > Ph. D. Student 11 14%
Student > Master 9 12%
Student > Bachelor 8 10%
Student > Doctoral Student 8 10%
Other 15 19%
Unknown 14 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 35 45%
Biochemistry, Genetics and Molecular Biology 23 29%
Environmental Science 1 1%
Computer Science 1 1%
Energy 1 1%
Other 1 1%
Unknown 16 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2016.
All research outputs
#15,739,529
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#862
of 1,578 outputs
Outputs of similar age
#163,324
of 313,160 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#22
of 50 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,160 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.