↓ Skip to main content

Differential responses of the gut transcriptome to plant protein diets in farmed Atlantic salmon

Overview of attention for article published in BMC Genomics, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
119 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential responses of the gut transcriptome to plant protein diets in farmed Atlantic salmon
Published in
BMC Genomics, February 2016
DOI 10.1186/s12864-016-2473-0
Pubmed ID
Authors

Elżbieta Król, Alex Douglas, Douglas R. Tocher, Viv O. Crampton, John R. Speakman, Christopher J. Secombes, Samuel A. M. Martin

Abstract

The potential for alternative plant protein sources to replace limited marine ingredients in fish feeds is important for the future of the fish farming industry. However, plant ingredients in fish feeds contain antinutritional factors (ANFs) that can promote gut inflammation (enteritis) and compromise fish health. It is unknown whether enteritis induced by plant materials with notable differences in secondary metabolism is characterised by common or distinct gene expression patterns, and how using feeds with single vs mixed plant proteins may affect the gut transcriptome and fish performance. We used Atlantic salmon parr to investigate the transcriptome responses of distal gut to varying dietary levels (0-45 %) of soy protein concentrate (SPC) and faba bean (Vicia faba) protein concentrate (BPC) following an 8-week feeding trial. Soybean meal (SBM) and fish meal (FM) were used as positive and negative controls for enteritis, respectively. Gene expression profiling was performed using a microarray platform developed and validated for Atlantic salmon. Different plant protein materials (SPC, BPC and SBM) generated substantially different gut gene expression profiles, with relatively few transcriptomic alterations (genes, pathways and GO terms) common for all plant proteins used. When SPC and BPC were simultaneously included in the diet, they induced less extensive alterations of gut transcriptome than diets with either SPC or BPC singly, probably due to reduced levels of individual ANFs. The mixed plant protein diets were also associated with improved body composition of fish relative to the single plant protein diets, which may provide evidence for a link between the magnitude of changes in gut transcriptome and whole-animal performance. Our results indicate that gut transcriptomic profiling provides a useful tool for testing the applicability of alternative protein sources for aquaculture feeds and designing diets with reduced impact of ANFs on fish health. Ultimately, understanding diet-gut interactions and intestinal homeostasis in farmed fish is important to maximise performance and to ensure that aquaculture continues to be a sustainable source of food for a growing world population.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 119 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Norway 1 <1%
Unknown 117 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 24%
Researcher 18 15%
Student > Bachelor 17 14%
Student > Master 11 9%
Student > Postgraduate 5 4%
Other 15 13%
Unknown 24 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 58 49%
Biochemistry, Genetics and Molecular Biology 12 10%
Environmental Science 6 5%
Veterinary Science and Veterinary Medicine 4 3%
Immunology and Microbiology 3 3%
Other 6 5%
Unknown 30 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 March 2016.
All research outputs
#14,712,301
of 22,852,911 outputs
Outputs from BMC Genomics
#6,105
of 10,658 outputs
Outputs of similar age
#164,753
of 297,594 outputs
Outputs of similar age from BMC Genomics
#149
of 219 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,658 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,594 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 219 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.