↓ Skip to main content

Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations

Overview of attention for article published in Journal of Cheminformatics, February 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations
Published in
Journal of Cheminformatics, February 2016
DOI 10.1186/s13321-016-0120-z
Pubmed ID
Authors

David M. L. Brown, Herman Cho, Wibe A. de Jong

Abstract

The testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashion would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists. An implementation of an automated workflow has been developed for the integrated analysis of data from nuclear magnetic resonance (NMR) experiments and electronic structure calculations. Kepler (Altintas et al. 2004) open source software was used to coordinate the processing and transfer of data at each step of the workflow. This workflow incorporated several open source software components, including electronic structure code to compute NMR parameters, a program to simulate NMR signals, NMR data processing programs, and others. The Kepler software was found to be sufficiently flexible to address several minor implementation challenges without recourse to other software solutions. The automated workflow was demonstrated with data from a [Formula: see text] NMR study of uranyl salts described previously (Cho et al. in J Chem Phys 132:084501, 2010). The functional implementation of an automated process linking NMR data with electronic structure predictions demonstrates that modern software tools such as Kepler can be used to construct programs that comprehensively manage complex, multi-step scientific workflows spanning several different computers. Automation of the workflow can greatly accelerate the pace of discovery, and allows researchers to focus on the fundamental scientific questions rather than mastery of specialized software and data processing techniques. Future developments that would expand the scope and power of this approach include tools to standardize data and associated metadata formats, and the creation of interactive user interfaces to allow real-time exploration of the effects of program inputs on calculated outputs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Colombia 1 7%
Brazil 1 7%
United Kingdom 1 7%
Russia 1 7%
United States 1 7%
Unknown 9 64%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 29%
Student > Ph. D. Student 3 21%
Researcher 3 21%
Professor > Associate Professor 2 14%
Unknown 2 14%
Readers by discipline Count As %
Chemistry 4 29%
Agricultural and Biological Sciences 2 14%
Computer Science 2 14%
Social Sciences 2 14%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Other 1 7%
Unknown 2 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 March 2016.
All research outputs
#18,444,553
of 22,852,911 outputs
Outputs from Journal of Cheminformatics
#802
of 836 outputs
Outputs of similar age
#290,204
of 400,375 outputs
Outputs of similar age from Journal of Cheminformatics
#15
of 16 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 836 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,375 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.