↓ Skip to main content

Dynamical modeling of uncertain interaction-based genomic networks

Overview of attention for article published in BMC Bioinformatics, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dynamical modeling of uncertain interaction-based genomic networks
Published in
BMC Bioinformatics, December 2015
DOI 10.1186/1471-2105-16-s13-s3
Pubmed ID
Authors

Daniel N Mohsenizadeh, Jianping Hua, Michael Bittner, Edward R Dougherty

Abstract

Most dynamical models for genomic networks are built upon two current methodologies, one process-based and the other based on Boolean-type networks. Both are problematic when it comes to experimental design purposes in the laboratory. The first approach requires a comprehensive knowledge of the parameters involved in all biological processes a priori, whereas the results from the second method may not have a biological correspondence and thus cannot be tested in the laboratory. Moreover, the current methods cannot readily utilize existing curated knowledge databases and do not consider uncertainty in the knowledge. Therefore, a new methodology is needed that can generate a dynamical model based on available biological data, assuming uncertainty, while the results from experimental design can be examined in the laboratory. We propose a new methodology for dynamical modeling of genomic networks that can utilize the interaction knowledge provided in public databases. The model assigns discrete states for physical entities, sets priorities among interactions based on information provided in the database, and updates each interaction based on associated node states. Whenever uncertainty in dynamics arises, it explores all possible outcomes. By using the proposed model, biologists can study regulation networks that are too complex for manual analysis. The proposed approach can be effectively used for constructing dynamical models of interaction-based genomic networks without requiring a complete knowledge of all parameters affecting the network dynamics, and thus based on a small set of available data.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 50%
Student > Bachelor 1 17%
Student > Postgraduate 1 17%
Unknown 1 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 33%
Computer Science 2 33%
Business, Management and Accounting 1 17%
Unknown 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2016.
All research outputs
#20,313,158
of 22,854,458 outputs
Outputs from BMC Bioinformatics
#6,864
of 7,292 outputs
Outputs of similar age
#324,857
of 387,573 outputs
Outputs of similar age from BMC Bioinformatics
#139
of 145 outputs
Altmetric has tracked 22,854,458 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,292 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 387,573 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 145 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.