↓ Skip to main content

Extracting drug-enzyme relation from literature as evidence for drug drug interaction

Overview of attention for article published in Journal of Biomedical Semantics, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extracting drug-enzyme relation from literature as evidence for drug drug interaction
Published in
Journal of Biomedical Semantics, March 2016
DOI 10.1186/s13326-016-0052-6
Pubmed ID
Authors

Yaoyun Zhang, Heng-Yi Wu, Jingcheng Du, Jun Xu, Jingqi Wang, Cui Tao, Lang Li, Hua Xu

Abstract

Information about drug-drug interactions (DDIs) is crucial for computational applications such as pharmacovigilance and drug repurposing. However, existing sources of DDIs have the problems of low coverage, low accuracy and low agreement. One common type of DDIs is related to the mechanism of drug metabolism: a DDI relation may be caused by different interactions (e.g., substrate, inhibit) between drugs and enzymes in the drug metabolism process. Thus, information from drug enzyme interactions (DEIs) serves as important supportive evidence for DDIs. Further, potential DDIs present implicitly could be detected by inference and reasoning based on DEIs. In this article, we propose a hybrid approach to combining machine learning algorithm with trigger words and syntactic patterns, for DEI relation extraction from biomedical literature. The extracted DEI relations are used for reasoning to infer potential DDI relations, based on a defined drug-enzyme ontology incorporating biological knowledge. Evaluation results demonstrate that the performance of DEI relation extraction is promising, with an F-measure of 84.97 % on the in vivo dataset and 65.58 % on the in vitro dataset. Further, the inferred DDIs achieved a precision of 83.19 % on the in vivo dataset and 70.94 % on the in vitro dataset, respectively. A further examination showed that the overlaps between our inferred DDIs and those present in DrugBank were 42.02 % on the in vivo dataset and 19.23 % on the in vitro dataset, respectively. This paper proposed an effective approach to extract DEI relations from biomedical literature. Potential DDIs not present in existing knowledge bases were then inferred based on the extracted DEIs, demonstrating the capability of the proposed approach to detect DDIs with scientific evidence for pharmacovigilance and drug repurposing applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 22%
Student > Master 6 22%
Student > Doctoral Student 2 7%
Student > Ph. D. Student 2 7%
Student > Bachelor 2 7%
Other 2 7%
Unknown 7 26%
Readers by discipline Count As %
Computer Science 6 22%
Medicine and Dentistry 5 19%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Agricultural and Biological Sciences 2 7%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 2 7%
Unknown 9 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2016.
All research outputs
#15,362,987
of 22,854,458 outputs
Outputs from Journal of Biomedical Semantics
#238
of 364 outputs
Outputs of similar age
#177,590
of 298,965 outputs
Outputs of similar age from Journal of Biomedical Semantics
#9
of 9 outputs
Altmetric has tracked 22,854,458 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 364 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,965 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one.