↓ Skip to main content

Electroacupuncture preconditioning reduces ROS generation with NOX4 down-regulation and ameliorates blood-brain barrier disruption after ischemic stroke

Overview of attention for article published in Journal of Biomedical Science, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Electroacupuncture preconditioning reduces ROS generation with NOX4 down-regulation and ameliorates blood-brain barrier disruption after ischemic stroke
Published in
Journal of Biomedical Science, March 2016
DOI 10.1186/s12929-016-0249-0
Pubmed ID
Authors

Yeon Suk Jung, Sae-Won Lee, Jung Hwa Park, Hyung Bum Seo, Byung Tae Choi, Hwa Kyoung Shin

Abstract

Electroacupuncture (EA) is a modern application based on combination of traditional manual acupuncture and electrotherapy that is frequently recommended as an adjuvant treatment for ischemic stroke. EA preconditioning can ameliorate blood-brain barrier (BBB) dysfunction and brain edema in ischemia-reperfusion injury; however, its mechanism remains unclear. This study investigated the preventive effects of EA preconditioning, particularly on BBB injury, followed by a transient middle cerebral artery occlusion (MCAO) model in mice. Mice were treated with EA (20 min) at Baihui (GV20) and Dazhui (GV14) acupoints once a day for 3 days before ischemic injury. Infarct volume, neurological deficits, oxidative stress, Evans blue leakage and brain edema were evaluated at 24 h after ischemia-reperfusion injury. EA preconditioning significantly decreased infarct volume and improved neurological function even after ischemic injury. In addition, both Evans blue leakage and water content were significantly reduced in EA preconditioned mice. Whereas the expression of tight junction proteins, ZO-1 and claudin-5, were remarkably increased by EA preconditioning. Mice with EA preconditioning showed the reduction of astrocytic aquaporin 4, which is involved in BBB permeabilization. In addition, we found that EA preconditioning decreased reactive oxygen species (ROS) in brain tissues after ischemic injury. The expression of NADPH oxidase 4 (NOX4), not NOX2, was significantly suppressed in EA preconditioned mice. These results suggest that EA preconditioning improve neural function after ischemic injury through diminishing BBB disruption and brain edema. And, the reduction of ROS generation and NOX4 expression by EA preconditioning might be involved in BBB recovery. Therefore, EA may serve as a potential preventive strategy for patients at high risk of ischemic stroke.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 19%
Researcher 6 14%
Student > Master 4 10%
Student > Bachelor 2 5%
Professor 2 5%
Other 6 14%
Unknown 14 33%
Readers by discipline Count As %
Medicine and Dentistry 10 24%
Agricultural and Biological Sciences 5 12%
Biochemistry, Genetics and Molecular Biology 4 10%
Mathematics 1 2%
Unspecified 1 2%
Other 5 12%
Unknown 16 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2016.
All research outputs
#22,756,649
of 25,368,786 outputs
Outputs from Journal of Biomedical Science
#968
of 1,100 outputs
Outputs of similar age
#270,266
of 313,887 outputs
Outputs of similar age from Journal of Biomedical Science
#15
of 16 outputs
Altmetric has tracked 25,368,786 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,100 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,887 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.