↓ Skip to main content

Bioprospecting potential of halogenases from Arctic marine actinomycetes

Overview of attention for article published in BMC Microbiology, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bioprospecting potential of halogenases from Arctic marine actinomycetes
Published in
BMC Microbiology, March 2016
DOI 10.1186/s12866-016-0662-2
Pubmed ID
Authors

Li Liao, Ruiqin Chen, Ming Jiang, Xiaoqing Tian, Huan Liu, Yong Yu, Chenqi Fan, Bo Chen

Abstract

Halometabolites, an important group of natural products, generally require halogenases for their biosynthesis. Actinomycetes from the Arctic Ocean have rarely been investigated for halogenases and their gene clusters associated, albeit great potential of halometabolite production has been predicted. Therefore, we initiated this research on the screening of halogenases from Arctic marine actinomycetes isolates to explore their genetic potential of halometabolite biosynthesis. Nine halogenase genes were discovered from sixty Arctic marine actinomycetes using in-house designed or previously reported PCR primers. Four representative genotypes were further cloned to obtain full coding regions through genome walking. The resulting halogenases were predicted to be involved in halogenation of indole groups, antitumor agent ansamitocin-like substrates, or unknown peptide-like compounds. Genome sequencing revealed a potential gene cluster containing the halogenase predicted to catalyze peptide-like compounds. However, the gene cluster was probably silent under the current conditions. PCR-based screening of halogenase genes is a powerful and efficient tool to conduct bioprospecting of halometabolite-producing actinomycetes from the Arctic. Genome sequencing can also identify cryptic gene clusters potentially producing new halometabolites, which might be easily missed by traditional isolation and chemical characterization. In addition, our study indicates that great genetic potential of new halometabolites can be expected from mostly untapped actinomycetes from the polar regions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 21%
Student > Master 10 19%
Student > Bachelor 8 15%
Student > Ph. D. Student 8 15%
Student > Postgraduate 3 6%
Other 7 13%
Unknown 6 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 36%
Agricultural and Biological Sciences 13 25%
Environmental Science 5 9%
Chemistry 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 3 6%
Unknown 8 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2016.
All research outputs
#20,315,221
of 22,856,968 outputs
Outputs from BMC Microbiology
#2,692
of 3,193 outputs
Outputs of similar age
#253,437
of 300,113 outputs
Outputs of similar age from BMC Microbiology
#50
of 62 outputs
Altmetric has tracked 22,856,968 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,193 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,113 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.