↓ Skip to main content

Paralog analyses reveal gene duplication events and genes under positive selection in Ixodes scapularis and other ixodid ticks

Overview of attention for article published in BMC Genomics, March 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Paralog analyses reveal gene duplication events and genes under positive selection in Ixodes scapularis and other ixodid ticks
Published in
BMC Genomics, March 2016
DOI 10.1186/s12864-015-2350-2
Pubmed ID
Authors

Janice P. Van Zee, Jessica A. Schlueter, Shannon Schlueter, Philip Dixon, Carlos A. Brito Sierra, Catherine A. Hill

Abstract

Hard ticks (family Ixodidae) are obligatory hematophagous ectoparasites of worldwide medical and veterinary importance. The haploid genomes of multiple species of ixodid ticks exceed 1 Gbp, prompting questions regarding gene, segmental and whole genome duplication in this phyletic group. The availability of the genome assembly for the black legged tick, Ixodes scapularis, and transcriptome datasets for multiple species of ticks offers an opportunity to assess the contribution of gene duplication to the genome. Here we developed a bioinformatics pipeline to identify and analyze duplicated genes (paralogs) using gene models from the prostriate tick, I. scapularis IscaW1.1 annotation and expressed sequence tags (ESTs) from I. scapularis and the metastriate ticks, Rhipicephalus microplus (southern cattle tick), R. appendiculatus (brown ear tick) and Amblyomma variegatum (tropical bont tick). Approximately 1-2 % of I. scapularis gene models and 2-14 % of ESTs from the four species represent duplicated genes. The ratio of non-synonymous to synonymous nucleotide substitution rates suggests ~ 25 % of duplicated genes are under positive selection pressure in each species. Analyses of synonymous substitution rates provide evidence for two duplication events in I. scapularis and R. microplus involving several hundred genes. Conservative molecular clock estimates based on synonymous substitution rates for species of Anopheles mosquitoes and the fruit fly, Drosophila melanogaster, suggest these events occurred within the last 50 MYA. Mapping of paralogs to the I. scapularis genome assembly supports tandem, or possibly segmental duplication events. The present study marks the first genome-level analyses of gene duplication for the Ixodidae and provides insights into mechanisms shaping genome evolution in this group. At least two duplication events involving hundreds of genes may have occurred independently in the lineages prostriata and metastriata, with tandem and segmental duplication the most likely mechanisms for paralog generation. Duplicated genes under positive selection pressure may be linked to emerging functions in the tick and represent important candidates for further study.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 27%
Student > Master 8 15%
Student > Bachelor 7 13%
Researcher 4 8%
Student > Doctoral Student 3 6%
Other 7 13%
Unknown 9 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 35%
Agricultural and Biological Sciences 13 25%
Veterinary Science and Veterinary Medicine 3 6%
Medicine and Dentistry 3 6%
Immunology and Microbiology 2 4%
Other 2 4%
Unknown 11 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 March 2016.
All research outputs
#12,755,748
of 22,856,968 outputs
Outputs from BMC Genomics
#4,403
of 10,661 outputs
Outputs of similar age
#133,160
of 300,005 outputs
Outputs of similar age from BMC Genomics
#80
of 217 outputs
Altmetric has tracked 22,856,968 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,661 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,005 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 217 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.