↓ Skip to main content

Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: systems analysis of molecular changes and their effect on radiation and drug sensitivity

Overview of attention for article published in BMC Cancer, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: systems analysis of molecular changes and their effect on radiation and drug sensitivity
Published in
BMC Cancer, March 2016
DOI 10.1186/s12885-016-2274-5
Pubmed ID
Authors

Roman Mezencev, Lilya V. Matyunina, Neda Jabbari, John F. McDonald

Abstract

Epithelial-to-mesenchymal transition (EMT) has been associated with the acquisition of metastatic potential and the resistance of cancer cells to therapeutic treatments. MCF-7 breast cancer cells engineered to constitutively express the zinc-finger transcriptional repressor gene Snail (MCF-7-Snail cells) have been previously shown to display morphological and molecular changes characteristic of EMT. We report here the results of a comprehensive systems level molecular analysis of changes in global patterns of gene expression and levels of glutathione and reactive oxygen species (ROS) in MCF-7-Snail cells and the consequence of these changes on the sensitivity of cells to radiation treatment and therapeutic drugs. Snail-induced changes in global patterns of gene expression were identified by microarray profiling using the Affymetrix platform (U133 Plus 2.0). The resulting data were processed and analyzed by a variety of system level analytical methods. Levels of ROS and glutathione (GSH) were determined by fluorescent and luminescence assays, and nuclear levels of NF-κB protein were determined by an ELISA based method. The sensitivity of cells to ionizing radiation and anticancer drugs was determined using a resazurin-based cell cytotoxicity assay. Constitutive ectopic expression of Snail in epithelial-like, luminal A-type MCF-7 cells induced significant changes in the expression of >7600 genes including gene and miRNA regulators of EMT. Mesenchymal-like MCF-7-Snail cells acquired molecular profiles characteristic of triple-negative, claudin-low breast cancer cells, and displayed increased sensitivity to radiation treatment, and increased, decreased or no change in sensitivity to a variety of anticancer drugs. Elevated ROS levels in MCF-7-Snail cells were unexpectedly not positively correlated with NF-κB activity. Ectopic expression of Snail in MCF-7 cells resulted in morphological and molecular changes previously associated with EMT. The results underscore the complexity and cell-type dependent nature of the EMT process and indicate that EMT is not necessarily predictive of decreased resistance to radiation and drug-based therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Hungary 1 1%
France 1 1%
Canada 1 1%
Unknown 79 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 26%
Researcher 12 15%
Student > Bachelor 11 13%
Student > Doctoral Student 4 5%
Student > Master 4 5%
Other 10 12%
Unknown 20 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 27 33%
Agricultural and Biological Sciences 16 20%
Medicine and Dentistry 7 9%
Engineering 3 4%
Immunology and Microbiology 2 2%
Other 4 5%
Unknown 23 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2016.
All research outputs
#15,357,612
of 23,613,071 outputs
Outputs from BMC Cancer
#3,797
of 8,487 outputs
Outputs of similar age
#172,327
of 302,164 outputs
Outputs of similar age from BMC Cancer
#74
of 171 outputs
Altmetric has tracked 23,613,071 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,487 research outputs from this source. They receive a mean Attention Score of 4.4. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 302,164 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 171 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.