↓ Skip to main content

Protein tyrosine phosphatase PTP-RR regulates corticosteroid sensitivity

Overview of attention for article published in Respiratory Research, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Protein tyrosine phosphatase PTP-RR regulates corticosteroid sensitivity
Published in
Respiratory Research, March 2016
DOI 10.1186/s12931-016-0349-0
Pubmed ID
Authors

Yoshiki Kobayashi, Kazuhiro Ito, Akira Kanda, Koich Tomoda, Anna Miller-Larsson, Peter J. Barnes, Nicolas Mercado

Abstract

We have recently reported that protein phosphate 2A (PP2A) inactivation resulted in increased phosphorylation of the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase 1 (JNK1) and glucocorticoid receptors (GR) at Ser(226), thereby reducing GR nuclear translocation and causing corticosteroid insensitivity in severe asthmatics. Protein tyrosine phosphatases (PTPs) are also known to be critically involved in the regulation of MAPKs, such as JNK and therefore potentially associated with GR function. The aim of study was to elucidate the involvement of MAPK-PTPs (PTP-RR, PTP-N5 and PTP-N7), which can dephosphorylate MAPKs, in the regulation of corticosteroid sensitivity. Corticosteroid sensitivity, GR nuclear translocation, phosphorylation levels of GR-Ser(226), JNK1 and PP2A catalytic subunit (PP2AC)-Tyr(307) and protein expression levels and activities of PTP-RR and PP2AC were evaluated in U937 cells and/or peripheral blood mononuclear cells (PBMCs). Knock-down effects of MAPK-PTPs using siRNA were also evaluated. Knock-down of PTP-RR, but not of PTP-N5 or PTP-N7 impaired corticosteroid sensitivity, induced GR-Ser(226) phosphorylation and reduced GR nuclear translocation. Under IL-2/IL-4-induced corticosteroid insensitivity, PTP-RR expression, activity and associations with JNK1 and GR were reduced but PTP-RR activity was restored by formoterol. Also in PBMCs from severe asthmatic patients, PTP-RR and JNK1 expression were reduced and GR-Ser(226) phosphorylation increased. Furthermore, PTP-RR was associated with PP2A. PTP-RR reduction enhanced PP2AC-Tyr(307) phosphorylation leading to impairment of PP2A expression and activity. We demonstrated that with corticosteroid insensitivity PTP-RR fails to reduce phosphorylation of JNK1 and GR-Ser(226), resulting in down-regulation of GR nuclear translocation. Reduced PTP-RR may represent a novel cause of corticosteroid insensitivity in severe asthmatics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 17%
Student > Master 3 13%
Student > Doctoral Student 3 13%
Student > Ph. D. Student 3 13%
Librarian 2 8%
Other 5 21%
Unknown 4 17%
Readers by discipline Count As %
Medicine and Dentistry 11 46%
Pharmacology, Toxicology and Pharmaceutical Science 4 17%
Biochemistry, Genetics and Molecular Biology 2 8%
Agricultural and Biological Sciences 1 4%
Psychology 1 4%
Other 1 4%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2016.
All research outputs
#16,721,717
of 25,374,647 outputs
Outputs from Respiratory Research
#2,055
of 3,062 outputs
Outputs of similar age
#183,090
of 314,825 outputs
Outputs of similar age from Respiratory Research
#20
of 35 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,825 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.