↓ Skip to main content

Differential expression of Spiroplasma citri surface protein genes in the plant and insect hosts

Overview of attention for article published in BMC Microbiology, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential expression of Spiroplasma citri surface protein genes in the plant and insect hosts
Published in
BMC Microbiology, March 2016
DOI 10.1186/s12866-016-0666-y
Pubmed ID
Authors

Marie-Pierre Dubrana, Laure Béven, Nathalie Arricau-Bouvery, Sybille Duret, Stéphane Claverol, Joël Renaudin, Colette Saillard

Abstract

Spiroplasma citri is a cell wall-less, plant pathogenic bacteria that colonizes two distinct hosts, the leafhopper vector and the host plant. Given the absence of a cell wall, surface proteins including lipoproteins and transmembrane polypeptides are expected to play key roles in spiroplasma/host interactions. Important functions in spiroplasma/insect interactions have been shown for a few surface proteins such as the major lipoprotein spiralin, the transmembrane S. citri adhesion-related proteins (ScARPs) and the sugar transporter subunit Sc76. S. citri efficient transmission from the insect to the plant is expected to rely on its ability to adapt to the different environments and more specifically to regulate the expression of genes encoding surface-exposed proteins. Genes encoding S. citri lipoproteins and ScARPs were investigated for their expression level in axenic medium, in the leafhopper vector Circulifer haematoceps and in the host plant (periwinkle Catharanthus roseus) either insect-infected or graft-inoculated. The vast majority of the lipoprotein genes tested (25/28) differentially responded to the various host environments. Considering their relative expression levels in the different environments, the possible involvement of the targeted genes in spiroplasma host adaptation was discussed. In addition, two S. citri strains differing notably in their ability to express adhesin ScARP2b and pyruvate dehydrogenase E1 component differed in their capacity to multiply in the two hosts, the plant and the leafhopper vector. This study provided us with a list of genes differentially expressed in the different hosts, leading to the identification of factors that are thought to be involved in the process of S. citri host adaptation. The identification of such factors is a key step for further understanding of S. citri pathogenesis. Moreover the present work highlights the high capacity of S. citri in tightly regulating the expression level of a large set of surface protein genes, despite the small size of its genome.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 24%
Student > Master 6 16%
Researcher 4 11%
Student > Bachelor 2 5%
Student > Doctoral Student 2 5%
Other 5 14%
Unknown 9 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 35%
Biochemistry, Genetics and Molecular Biology 6 16%
Environmental Science 3 8%
Immunology and Microbiology 1 3%
Psychology 1 3%
Other 1 3%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 March 2016.
All research outputs
#20,317,110
of 22,858,915 outputs
Outputs from BMC Microbiology
#2,692
of 3,193 outputs
Outputs of similar age
#254,419
of 300,114 outputs
Outputs of similar age from BMC Microbiology
#52
of 63 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,193 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,114 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.