↓ Skip to main content

Relative compatibility of Schistosoma mansoni with Biomphalaria sudanica and B. pfeifferi from Kenya as assessed by PCR amplification of the S. mansoni ND5 gene in conjunction with traditional methods

Overview of attention for article published in Parasites & Vectors, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Relative compatibility of Schistosoma mansoni with Biomphalaria sudanica and B. pfeifferi from Kenya as assessed by PCR amplification of the S. mansoni ND5 gene in conjunction with traditional methods
Published in
Parasites & Vectors, March 2016
DOI 10.1186/s13071-016-1457-x
Pubmed ID
Authors

Lijun Lu, Si-Ming Zhang, Martin W. Mutuku, Gerald M. Mkoji, Eric S. Loker

Abstract

Schistosoma mansoni is hosted by several species of Biomphalaria spp. snails in Africa. We were interested in determining if there were differences in compatibility of S. mansoni with Biomphalaria sudanica from Lake Victoria, or with B. pfeifferi from streams and smaller water bodies in Kenya. Does this parasite develop with equal efficiency in both snail species, and does this have implications for transmission in different habitat types? Primers for PCR amplification of the S. mansoni ND5 gene were designed and tested for sensitivity and specificity. We exposed laboratory-reared B. sudanica and field-derived B. pfeifferi to single miracidium infections and at 1, 2, 4, 8, 16 and 24 days post-exposure (dpe), snails were extracted for the PCR assay. Snails were also shed for cercariae and/or dissected prior to extraction. Additionally, B. sudanica and B. pfeifferi were collected from field locations and tested with the PCR assay. The ND5 PCR assay was sensitive (>0.1 fg S. mansoni genomic DNA) and allowed S. mansoni to be differentiated from other relevant schistosome species or snails. The number of PCR positive snails at 1-4 dpe was higher for B. pfeifferi than for B. sudanica, but not significantly so (P = 0.052). From 8-24 dpe, more B. pfeifferi harbored successfully developing parasites (positive by both dissection and PCR) than did B. sudanica (P = 0.008). At 40 dpe, more B. pfeifferi than B. sudanica shed cercariae or harbored dissection positive/PCR positive infections (P < 0.001). Both immature and failed (dissection negative but PCR positive) S. mansoni infections could also be detected in naturally infected snails of both species. The PCR assay detected S. mansoni infections in snails exposed to one miracidium for one day. Both B. sudanica and B. pfeifferi supported full development of S. mansoni, but B. pfeifferi was more compatible, with significantly more dissection positive/PCR positive or shedding infections, and significantly fewer failed infections (dissection negative/PCR positive). This highlights the relatively lower compatibility of B. sudanica with S. mansoni, and suggests the factors responsible for incompatibility and how they might affect transmission of S. mansoni in habitats like Lake Victoria deserve additional study.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 10 23%
Student > Ph. D. Student 9 20%
Student > Master 6 14%
Researcher 3 7%
Student > Doctoral Student 2 5%
Other 4 9%
Unknown 10 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 30%
Biochemistry, Genetics and Molecular Biology 9 20%
Immunology and Microbiology 3 7%
Environmental Science 2 5%
Chemistry 2 5%
Other 5 11%
Unknown 10 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2016.
All research outputs
#20,317,110
of 22,858,915 outputs
Outputs from Parasites & Vectors
#4,853
of 5,470 outputs
Outputs of similar age
#253,688
of 299,501 outputs
Outputs of similar age from Parasites & Vectors
#150
of 168 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,470 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,501 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 168 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.