↓ Skip to main content

Altered activity patterns of transcription factors induced by endoplasmic reticulum stress

Overview of attention for article published in BMC Molecular and Cell Biology, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Altered activity patterns of transcription factors induced by endoplasmic reticulum stress
Published in
BMC Molecular and Cell Biology, March 2016
DOI 10.1186/s12858-016-0060-2
Pubmed ID
Authors

Sheena Jiang, Eric Zhang, Rachel Zhang, Xianqiang Li

Abstract

The endoplasmic-reticulum (ER) responds to the burden of unfolded proteins in its lumen by activating intracellular signal transduction pathways, also known as the unfolded protein response (UPR). Many signal transduction events and transcription factors have been demonstrated to be associated with ER stress. The process in which ER stress affects or interacts with other pathways is still a progressing topic that is not completely understood. Identifying new transcription factors associated with ER stress pathways provides a platform to comprehensively characterize mechanism and functionality of ER. We utilized a transcription factor (TF) activation plate array to profile the TF activities which were affected by ER stress induced by pharmacological agents, thapsigargin (TG) and tunicamycin (TM) at 1 h, 4 h, 8 h and 16 h respectively, in MiaPACA2 cells. The altered activity patterns were analyzed and validated using gel shift assays and cell-based luciferase reporter assay. The study has not only confirmed previous findings, which the TFs including ATF4, ATF6, XBP, NFkB, CHOP and AP1, were activated by ER stress, but also found four newly discovered TFs, NFAT, TCF/LEF were activated, and PXR was repressed in response of ER stress. Different patterns of TF activities in MiaPaCa2 were demonstrated upon TM or TG treatment in the time course experiments. The altered activities of TFs were confirmed using gel shift assays and luciferase reporter vectors. This study utilized a TF activation array technology to identify four new TFs, HIF, NFAT, TCF/LEF and PXR that were changed in their activity as a result of ER stress induced by TG and TM. The TF activity patterns were demonstrated to be diverse in response to the duration of TG or TM treatment. These new findings will facilitate further unveiling the complex mechanisms of the ER stress process and associated diseases.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 42 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 23%
Student > Doctoral Student 6 14%
Researcher 6 14%
Student > Master 5 12%
Student > Bachelor 4 9%
Other 4 9%
Unknown 8 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 26%
Biochemistry, Genetics and Molecular Biology 9 21%
Pharmacology, Toxicology and Pharmaceutical Science 3 7%
Medicine and Dentistry 3 7%
Neuroscience 2 5%
Other 6 14%
Unknown 9 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2016.
All research outputs
#20,657,128
of 25,374,917 outputs
Outputs from BMC Molecular and Cell Biology
#935
of 1,233 outputs
Outputs of similar age
#234,574
of 314,825 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#13
of 17 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,825 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.